🖼️ Format bbox label with fixed precision for ortcpp-example (#4409)
Signed-off-by: Onuralp SEZER <thunderbirdtr@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
8d7490f060
commit
4885538693
3 changed files with 75 additions and 19 deletions
|
|
@ -1,14 +1,19 @@
|
|||
# YOLOv8 OnnxRuntime C++
|
||||
<h1 align="center">YOLOv8 OnnxRuntime C++</h1>
|
||||
|
||||
<p align="center">
|
||||
<img alt="C++" src="https://img.shields.io/badge/C++-17-blue.svg?style=flat&logo=c%2B%2B">
|
||||
<img alt="Onnx-runtime" src="https://img.shields.io/badge/OnnxRuntime-717272.svg?logo=Onnx&logoColor=white"></img>
|
||||
</p>
|
||||
|
||||
This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API.
|
||||
|
||||
## Benefits
|
||||
## Benefits ✨
|
||||
|
||||
- Friendly for deployment in the industrial sector.
|
||||
- Faster than OpenCV's DNN inference on both CPU and GPU.
|
||||
- Supports FP32 and FP16 CUDA acceleration.
|
||||
|
||||
## Exporting YOLOv8 Models
|
||||
## Exporting YOLOv8 Models 📦
|
||||
|
||||
To export YOLOv8 models, use the following Python script:
|
||||
|
||||
|
|
@ -28,25 +33,50 @@ Alternatively, you can use the following command for exporting the model in the
|
|||
yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640
|
||||
```
|
||||
|
||||
## Download COCO.yaml file
|
||||
## Download COCO.yaml file 📂
|
||||
|
||||
In order to run example, you also need to download coco.yaml. You can download the file manually from [here](https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml)
|
||||
|
||||
## Dependencies
|
||||
## Dependencies ⚙️
|
||||
|
||||
| Dependency | Version |
|
||||
| -------------------------------- | ------------- |
|
||||
| Onnxruntime(linux,windows,macos) | >=1.14.1 |
|
||||
| OpenCV | >=4.0.0 |
|
||||
| C++ | >=17 |
|
||||
| Cmake | >=3.5 |
|
||||
| Cuda (Optional) | >=11.4,\<12.0 |
|
||||
| cuDNN (Cuda required) | =8 |
|
||||
| Dependency | Version |
|
||||
| -------------------------------- | -------------- |
|
||||
| Onnxruntime(linux,windows,macos) | >=1.14.1 |
|
||||
| OpenCV | >=4.0.0 |
|
||||
| C++ Standard | >=17 |
|
||||
| Cmake | >=3.5 |
|
||||
| Cuda (Optional) | >=11.4 \<12.0 |
|
||||
| cuDNN (Cuda required) | =8 |
|
||||
|
||||
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature.
|
||||
|
||||
Note (2): Due to ONNX Runtime, we need to use CUDA 11 and cuDNN 8. Keep in mind that this requirement might change in the future.
|
||||
|
||||
## Usage
|
||||
## Build 🛠️
|
||||
|
||||
1. Clone the repository to your local machine.
|
||||
1. Navigate to the root directory of the repository.
|
||||
1. Create a build directory and navigate to it:
|
||||
|
||||
```console
|
||||
mkdir build && cd build
|
||||
```
|
||||
|
||||
4. Run CMake to generate the build files:
|
||||
|
||||
```console
|
||||
cmake ..
|
||||
```
|
||||
|
||||
5. Build the project:
|
||||
|
||||
```console
|
||||
make
|
||||
```
|
||||
|
||||
6. The built executable should now be located in the `build` directory.
|
||||
|
||||
## Usage 🚀
|
||||
|
||||
```c++
|
||||
// CPU inference
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue