Fix some cuda training issues of segmentation (#46)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
db1031a1a9
commit
47f1cb3ef4
5 changed files with 38 additions and 21 deletions
|
|
@ -6,7 +6,7 @@ from tqdm import tqdm
|
|||
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils.ops import Profile
|
||||
from ultralytics.yolo.utils.torch_utils import select_device
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device
|
||||
|
||||
|
||||
class BaseValidator:
|
||||
|
|
@ -36,7 +36,9 @@ class BaseValidator:
|
|||
if training:
|
||||
model = trainer.model
|
||||
self.args.half &= self.device.type != 'cpu'
|
||||
model = model.half() if self.args.half else model
|
||||
# NOTE: half() inference in evaluation will make training stuck,
|
||||
# so I comment it out for now, I think we can reuse half mode after we add EMA.
|
||||
# model = model.half() if self.args.half else model
|
||||
else: # TODO: handle this when detectMultiBackend is supported
|
||||
# model = DetectMultiBacked(model)
|
||||
pass
|
||||
|
|
@ -48,8 +50,8 @@ class BaseValidator:
|
|||
n_batches = len(self.dataloader)
|
||||
desc = self.get_desc()
|
||||
bar = tqdm(self.dataloader, desc, n_batches, not training, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
|
||||
self.init_metrics(model)
|
||||
with torch.cuda.amp.autocast(enabled=self.device.type != 'cpu'):
|
||||
self.init_metrics(de_parallel(model))
|
||||
with torch.no_grad():
|
||||
for batch_i, batch in enumerate(bar):
|
||||
self.batch_i = batch_i
|
||||
# pre-process
|
||||
|
|
@ -58,7 +60,7 @@ class BaseValidator:
|
|||
|
||||
# inference
|
||||
with dt[1]:
|
||||
preds = model(batch["img"])
|
||||
preds = model(batch["img"].float())
|
||||
# TODO: remember to add native augmentation support when implementing model, like:
|
||||
# preds, train_out = model(im, augment=augment)
|
||||
|
||||
|
|
@ -85,6 +87,8 @@ class BaseValidator:
|
|||
self.logger.info(
|
||||
'Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image at shape ' % t)
|
||||
|
||||
if self.training:
|
||||
model.float()
|
||||
# TODO: implement save json
|
||||
|
||||
return stats
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue