CLI Simplification (#449)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
454191bd4b
commit
453b5f259a
16 changed files with 218 additions and 132 deletions
|
|
@ -67,7 +67,7 @@ pip install ultralytics
|
|||
YOLOv8 可以直接在命令行界面(CLI)中使用 `yolo` 命令运行:
|
||||
|
||||
```bash
|
||||
yolo task=detect mode=predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"
|
||||
yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"
|
||||
```
|
||||
|
||||
`yolo`可以用于各种任务和模式,并接受额外的参数,例如 `imgsz=640`。参见 YOLOv8 [文档](https://docs.ultralytics.com)中可用`yolo`[参数](https://docs.ultralytics.com/config/)的完整列表。
|
||||
|
|
@ -124,9 +124,9 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
|
||||
|
||||
- **mAP<sup>val</sup>** 结果都在 [COCO val2017](http://cocodataset.org) 数据集上,使用单模型单尺度测试得到。
|
||||
<br>复现命令 `yolo mode=val task=detect data=coco.yaml device=0`
|
||||
<br>复现命令 `yolo val detect data=coco.yaml device=0`
|
||||
- **推理速度**使用 COCO 验证集图片推理时间进行平均得到,测试环境使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例。
|
||||
<br>复现命令 `yolo mode=val task=detect data=coco128.yaml batch=1 device=0/cpu`
|
||||
<br>复现命令 `yolo val detect data=coco128.yaml batch=1 device=0/cpu`
|
||||
|
||||
</details>
|
||||
|
||||
|
|
@ -141,9 +141,9 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||||
|
||||
- **mAP<sup>val</sup>** 结果都在 [COCO val2017](http://cocodataset.org) 数据集上,使用单模型单尺度测试得到。
|
||||
<br>复现命令 `yolo mode=val task=segment data=coco.yaml device=0`
|
||||
<br>复现命令 `yolo val segment data=coco.yaml device=0`
|
||||
- **推理速度**使用 COCO 验证集图片推理时间进行平均得到,测试环境使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例。
|
||||
<br>复现命令 `yolo mode=val task=segment data=coco128-seg.yaml batch=1 device=0/cpu`
|
||||
<br>复现命令 `yolo val segment data=coco128-seg.yaml batch=1 device=0/cpu`
|
||||
|
||||
</details>
|
||||
|
||||
|
|
@ -158,9 +158,9 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
|
||||
|
||||
- **acc** 都在 [ImageNet](https://www.image-net.org/) 数据集上,使用单模型单尺度测试得到。
|
||||
<br>复现命令 `yolo mode=val task=classify data=path/to/ImageNet device=0`
|
||||
<br>复现命令 `yolo val classify data=path/to/ImageNet device=0`
|
||||
- **推理速度**使用 ImageNet 验证集图片推理时间进行平均得到,测试环境使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例。
|
||||
<br>复现命令 `yolo mode=val task=classify data=path/to/ImageNet batch=1 device=0/cpu`
|
||||
<br>复现命令 `yolo val classify data=path/to/ImageNet batch=1 device=0/cpu`
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue