Add Docs glossary links (#16448)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
8b8c25f216
commit
443fbce194
193 changed files with 1124 additions and 1124 deletions
|
|
@ -6,13 +6,13 @@ keywords: YOLOv5, Google Cloud Platform, GCP, Deep Learning VM, object detection
|
|||
|
||||
# Mastering YOLOv5 🚀 Deployment on Google Cloud Platform (GCP) Deep Learning Virtual Machine (VM) ⭐
|
||||
|
||||
Embarking on the journey of artificial intelligence and machine learning can be exhilarating, especially when you leverage the power and flexibility of a cloud platform. Google Cloud Platform (GCP) offers robust tools tailored for machine learning enthusiasts and professionals alike. One such tool is the Deep Learning VM that is preconfigured for data science and ML tasks. In this tutorial, we will navigate through the process of setting up YOLOv5 on a GCP Deep Learning VM. Whether you're taking your first steps in ML or you're a seasoned practitioner, this guide is designed to provide you with a clear pathway to implementing object detection models powered by YOLOv5.
|
||||
Embarking on the journey of [artificial intelligence](https://www.ultralytics.com/glossary/artificial-intelligence-ai) and machine learning can be exhilarating, especially when you leverage the power and flexibility of a cloud platform. Google Cloud Platform (GCP) offers robust tools tailored for machine learning enthusiasts and professionals alike. One such tool is the Deep Learning VM that is preconfigured for data science and ML tasks. In this tutorial, we will navigate through the process of setting up YOLOv5 on a GCP Deep Learning VM. Whether you're taking your first steps in ML or you're a seasoned practitioner, this guide is designed to provide you with a clear pathway to implementing object detection models powered by YOLOv5.
|
||||
|
||||
🆓 Plus, if you're a fresh GCP user, you're in luck with a [$300 free credit offer](https://cloud.google.com/free/docs/free-cloud-features#free-trial) to kickstart your projects.
|
||||
|
||||
In addition to GCP, explore other accessible quickstart options for YOLOv5, like our [Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"> for a browser-based experience, or the scalability of [Amazon AWS](./aws_quickstart_tutorial.md). Furthermore, container aficionados can utilize our official Docker image at [Docker Hub](https://hub.docker.com/r/ultralytics/yolov5) <img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"> for an encapsulated environment.
|
||||
|
||||
## Step 1: Create and Configure Your Deep Learning VM
|
||||
## Step 1: Create and Configure Your [Deep Learning](https://www.ultralytics.com/glossary/deep-learning-dl) VM
|
||||
|
||||
Let's begin by creating a virtual machine that's tuned for deep learning:
|
||||
|
||||
|
|
@ -42,7 +42,7 @@ cd yolov5
|
|||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
This setup process ensures you're working with a Python environment version 3.8.0 or newer and PyTorch 1.8 or above. Our scripts smoothly download [models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) rending from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases), making it hassle-free to start model training.
|
||||
This setup process ensures you're working with a Python environment version 3.8.0 or newer and [PyTorch](https://www.ultralytics.com/glossary/pytorch) 1.8 or above. Our scripts smoothly download [models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) rending from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases), making it hassle-free to start model training.
|
||||
|
||||
## Step 3: Train and Deploy Your YOLOv5 Models 🌐
|
||||
|
||||
|
|
@ -62,7 +62,7 @@ python detect.py --weights yolov5s.pt --source path/to/images
|
|||
python export.py --weights yolov5s.pt --include onnx coreml tflite
|
||||
```
|
||||
|
||||
With just a few commands, YOLOv5 allows you to train custom object detection models tailored to your specific needs or utilize pre-trained weights for quick results on a variety of tasks.
|
||||
With just a few commands, YOLOv5 allows you to train custom [object detection](https://www.ultralytics.com/glossary/object-detection) models tailored to your specific needs or utilize pre-trained weights for quick results on a variety of tasks.
|
||||
|
||||

|
||||
|
||||
|
|
@ -80,7 +80,7 @@ free -h # confirm the memory increment
|
|||
|
||||
### Concluding Thoughts
|
||||
|
||||
Congratulations! You are now empowered to harness the capabilities of YOLOv5 with the computational prowess of Google Cloud Platform. This combination provides scalability, efficiency, and versatility for your object detection tasks. Whether for personal projects, academic research, or industrial applications, you have taken a pivotal step into the world of AI and machine learning on the cloud.
|
||||
Congratulations! You are now empowered to harness the capabilities of YOLOv5 with the computational prowess of Google Cloud Platform. This combination provides scalability, efficiency, and versatility for your object detection tasks. Whether for personal projects, academic research, or industrial applications, you have taken a pivotal step into the world of AI and [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) on the cloud.
|
||||
|
||||
Do remember to document your journey, share insights with the Ultralytics community, and leverage the collaborative arenas such as [GitHub discussions](https://github.com/ultralytics/yolov5/discussions) to grow further. Now, go forth and innovate with YOLOv5 and GCP! 🌟
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue