Add Docs glossary links (#16448)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-09-23 23:48:46 +02:00 committed by GitHub
parent 8b8c25f216
commit 443fbce194
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
193 changed files with 1124 additions and 1124 deletions

View file

@ -37,7 +37,7 @@ The COCO-Pose dataset is split into three subsets:
## Applications
The COCO-Pose dataset is specifically used for training and evaluating deep learning models in keypoint detection and pose estimation tasks, such as OpenPose. The dataset's large number of annotated images and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners focused on pose estimation.
The COCO-Pose dataset is specifically used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in keypoint detection and pose estimation tasks, such as OpenPose. The dataset's large number of annotated images and standardized evaluation metrics make it an essential resource for [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) researchers and practitioners focused on pose estimation.
## Dataset YAML
@ -51,7 +51,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n-pose model on the COCO-Pose dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n-pose model on the COCO-Pose dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -140,7 +140,7 @@ For more details on the training process and available arguments, check the [tra
### What are the different metrics provided by the COCO-Pose dataset for evaluating model performance?
The COCO-Pose dataset provides several standardized evaluation metrics for pose estimation tasks, similar to the original COCO dataset. Key metrics include the Object Keypoint Similarity (OKS), which evaluates the accuracy of predicted keypoints against ground truth annotations. These metrics allow for thorough performance comparisons between different models. For instance, the COCO-Pose pretrained models such as YOLOv8n-pose, YOLOv8s-pose, and others have specific performance metrics listed in the documentation, like mAP<sup>pose</sup>50-95 and mAP<sup>pose</sup>50.
The COCO-Pose dataset provides several standardized evaluation metrics for pose estimation tasks, similar to the original COCO dataset. Key metrics include the Object Keypoint Similarity (OKS), which evaluates the [accuracy](https://www.ultralytics.com/glossary/accuracy) of predicted keypoints against ground truth annotations. These metrics allow for thorough performance comparisons between different models. For instance, the COCO-Pose pretrained models such as YOLOv8n-pose, YOLOv8s-pose, and others have specific performance metrics listed in the documentation, like mAP<sup>pose</sup>50-95 and mAP<sup>pose</sup>50.
### How is the dataset structured and split for the COCO-Pose dataset?