Add Docs glossary links (#16448)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-09-23 23:48:46 +02:00 committed by GitHub
parent 8b8c25f216
commit 443fbce194
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
193 changed files with 1124 additions and 1124 deletions

View file

@ -6,7 +6,7 @@ keywords: African Wildlife Dataset, South African animals, object detection, com
# African Wildlife Dataset
This dataset showcases four common animal classes typically found in South African nature reserves. It includes images of African wildlife such as buffalo, elephant, rhino, and zebra, providing valuable insights into their characteristics. Essential for training computer vision algorithms, this dataset aids in identifying animals in various habitats, from zoos to forests, and supports wildlife research.
This dataset showcases four common animal classes typically found in South African nature reserves. It includes images of African wildlife such as buffalo, elephant, rhino, and zebra, providing valuable insights into their characteristics. Essential for training [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) algorithms, this dataset aids in identifying animals in various habitats, from zoos to forests, and supports wildlife research.
<p align="center">
<br>
@ -29,7 +29,7 @@ The African wildlife objects detection dataset is split into three subsets:
## Applications
This dataset can be applied in various computer vision tasks such as object detection, object tracking, and research. Specifically, it can be used to train and evaluate models for identifying African wildlife objects in images, which can have applications in wildlife conservation, ecological research, and monitoring efforts in natural reserves and protected areas. Additionally, it can serve as a valuable resource for educational purposes, enabling students and researchers to study and understand the characteristics and behaviors of different animal species.
This dataset can be applied in various computer vision tasks such as [object detection](https://www.ultralytics.com/glossary/object-detection), object tracking, and research. Specifically, it can be used to train and evaluate models for identifying African wildlife objects in images, which can have applications in wildlife conservation, ecological research, and monitoring efforts in natural reserves and protected areas. Additionally, it can serve as a valuable resource for educational purposes, enabling students and researchers to study and understand the characteristics and behaviors of different animal species.
## Dataset YAML
@ -43,7 +43,7 @@ A YAML (Yet Another Markup Language) file defines the dataset configuration, inc
## Usage
To train a YOLOv8n model on the African wildlife dataset for 100 epochs with an image size of 640, use the provided code samples. For a comprehensive list of available parameters, refer to the model's [Training](../../modes/train.md) page.
To train a YOLOv8n model on the African wildlife dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, use the provided code samples. For a comprehensive list of available parameters, refer to the model's [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -136,7 +136,7 @@ For additional training parameters and options, refer to the [Training](../../mo
### Where can I find the YAML configuration file for the African Wildlife Dataset?
The YAML configuration file for the African Wildlife Dataset, named `african-wildlife.yaml`, can be found at [this GitHub link](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/african-wildlife.yaml). This file defines the dataset configuration, including paths, classes, and other details crucial for training machine learning models. See the [Dataset YAML](#dataset-yaml) section for more details.
The YAML configuration file for the African Wildlife Dataset, named `african-wildlife.yaml`, can be found at [this GitHub link](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/african-wildlife.yaml). This file defines the dataset configuration, including paths, classes, and other details crucial for training [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) models. See the [Dataset YAML](#dataset-yaml) section for more details.
### Can I see sample images and annotations from the African Wildlife Dataset?

View file

@ -29,7 +29,7 @@ The Argoverse dataset is organized into three main subsets:
## Applications
The Argoverse dataset is widely used for training and evaluating deep learning models in autonomous driving tasks such as 3D object tracking, motion forecasting, and stereo depth estimation. The dataset's diverse set of sensor data, object annotations, and map information make it a valuable resource for researchers and practitioners in the field of autonomous driving.
The Argoverse dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in autonomous driving tasks such as 3D object tracking, motion forecasting, and stereo depth estimation. The dataset's diverse set of sensor data, object annotations, and map information make it a valuable resource for researchers and practitioners in the field of autonomous driving.
## Dataset YAML
@ -43,7 +43,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n model on the Argoverse dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n model on the Argoverse dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"

View file

@ -6,7 +6,7 @@ keywords: brain tumor dataset, MRI scans, CT scans, brain tumor detection, medic
# Brain Tumor Dataset
A brain tumor detection dataset consists of medical images from MRI or CT scans, containing information about brain tumor presence, location, and characteristics. This dataset is essential for training computer vision algorithms to automate brain tumor identification, aiding in early diagnosis and treatment planning.
A brain tumor detection dataset consists of medical images from MRI or CT scans, containing information about brain tumor presence, location, and characteristics. This dataset is essential for training [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) algorithms to automate brain tumor identification, aiding in early diagnosis and treatment planning.
<p align="center">
<br>
@ -42,7 +42,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n model on the brain tumor dataset for 100 epochs with an image size of 640, utilize the provided code snippets. For a detailed list of available arguments, consult the model's [Training](../../modes/train.md) page.
To train a YOLOv8n model on the brain tumor dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, utilize the provided code snippets. For a detailed list of available arguments, consult the model's [Training](../../modes/train.md) page.
!!! example "Train Example"

View file

@ -6,7 +6,7 @@ keywords: COCO dataset, object detection, segmentation, benchmarking, computer v
# COCO Dataset
The [COCO](https://cocodataset.org/#home) (Common Objects in Context) dataset is a large-scale object detection, segmentation, and captioning dataset. It is designed to encourage research on a wide variety of object categories and is commonly used for benchmarking computer vision models. It is an essential dataset for researchers and developers working on object detection, segmentation, and pose estimation tasks.
The [COCO](https://cocodataset.org/#home) (Common Objects in Context) dataset is a large-scale object detection, segmentation, and captioning dataset. It is designed to encourage research on a wide variety of object categories and is commonly used for benchmarking [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) models. It is an essential dataset for researchers and developers working on object detection, segmentation, and pose estimation tasks.
<p align="center">
<br>
@ -34,7 +34,7 @@ The [COCO](https://cocodataset.org/#home) (Common Objects in Context) dataset is
- COCO contains 330K images, with 200K images having annotations for object detection, segmentation, and captioning tasks.
- The dataset comprises 80 object categories, including common objects like cars, bicycles, and animals, as well as more specific categories such as umbrellas, handbags, and sports equipment.
- Annotations include object bounding boxes, segmentation masks, and captions for each image.
- COCO provides standardized evaluation metrics like mean Average Precision (mAP) for object detection, and mean Average Recall (mAR) for segmentation tasks, making it suitable for comparing model performance.
- COCO provides standardized evaluation metrics like [mean Average Precision](https://www.ultralytics.com/glossary/mean-average-precision-map) (mAP) for object detection, and mean Average [Recall](https://www.ultralytics.com/glossary/recall) (mAR) for segmentation tasks, making it suitable for comparing model performance.
## Dataset Structure
@ -46,7 +46,7 @@ The COCO dataset is split into three subsets:
## Applications
The COCO dataset is widely used for training and evaluating deep learning models in object detection (such as YOLO, Faster R-CNN, and SSD), instance segmentation (such as Mask R-CNN), and keypoint detection (such as OpenPose). The dataset's diverse set of object categories, large number of annotated images, and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners.
The COCO dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in object detection (such as YOLO, Faster R-CNN, and SSD), [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation) (such as Mask R-CNN), and keypoint detection (such as OpenPose). The dataset's diverse set of object categories, large number of annotated images, and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners.
## Dataset YAML
@ -60,7 +60,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n model on the COCO dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n model on the COCO dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -118,7 +118,7 @@ We would like to acknowledge the COCO Consortium for creating and maintaining th
### What is the COCO dataset and why is it important for computer vision?
The [COCO dataset](https://cocodataset.org/#home) (Common Objects in Context) is a large-scale dataset used for object detection, segmentation, and captioning. It contains 330K images with detailed annotations for 80 object categories, making it essential for benchmarking and training computer vision models. Researchers use COCO due to its diverse categories and standardized evaluation metrics like mean Average Precision (mAP).
The [COCO dataset](https://cocodataset.org/#home) (Common Objects in Context) is a large-scale dataset used for [object detection](https://www.ultralytics.com/glossary/object-detection), segmentation, and captioning. It contains 330K images with detailed annotations for 80 object categories, making it essential for benchmarking and training computer vision models. Researchers use COCO due to its diverse categories and standardized evaluation metrics like mean Average [Precision](https://www.ultralytics.com/glossary/precision) (mAP).
### How can I train a YOLO model using the COCO dataset?

View file

@ -8,7 +8,7 @@ keywords: COCO8, Ultralytics, dataset, object detection, YOLOv8, training, valid
## Introduction
[Ultralytics](https://www.ultralytics.com/) COCO8 is a small, but versatile object detection dataset composed of the first 8 images of the COCO train 2017 set, 4 for training and 4 for validation. This dataset is ideal for testing and debugging object detection models, or for experimenting with new detection approaches. With 8 images, it is small enough to be easily manageable, yet diverse enough to test training pipelines for errors and act as a sanity check before training larger datasets.
[Ultralytics](https://www.ultralytics.com/) COCO8 is a small, but versatile [object detection](https://www.ultralytics.com/glossary/object-detection) dataset composed of the first 8 images of the COCO train 2017 set, 4 for training and 4 for validation. This dataset is ideal for testing and debugging object detection models, or for experimenting with new detection approaches. With 8 images, it is small enough to be easily manageable, yet diverse enough to test training pipelines for errors and act as a sanity check before training larger datasets.
<p align="center">
<br>
@ -35,7 +35,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n model on the COCO8 dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n model on the COCO8 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -87,7 +87,7 @@ If you use the COCO dataset in your research or development work, please cite th
}
```
We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the [COCO dataset website](https://cocodataset.org/#home).
We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) community. For more information about the COCO dataset and its creators, visit the [COCO dataset website](https://cocodataset.org/#home).
## FAQ

View file

@ -24,7 +24,7 @@ The Global Wheat Head Dataset is organized into two main subsets:
## Applications
The Global Wheat Head Dataset is widely used for training and evaluating deep learning models in wheat head detection tasks. The dataset's diverse set of images, capturing a wide range of appearances, environments, and conditions, make it a valuable resource for researchers and practitioners in the field of plant phenotyping and crop management.
The Global Wheat Head Dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in wheat head detection tasks. The dataset's diverse set of images, capturing a wide range of appearances, environments, and conditions, make it a valuable resource for researchers and practitioners in the field of plant phenotyping and crop management.
## Dataset YAML
@ -38,7 +38,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n model on the Global Wheat Head Dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n model on the Global Wheat Head Dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -130,7 +130,7 @@ Key features of the Global Wheat Head Dataset include:
- Over 3,000 training images from Europe (France, UK, Switzerland) and North America (Canada).
- Approximately 1,000 test images from Australia, Japan, and China.
- High variability in wheat head appearances due to different growing environments.
- Detailed annotations with wheat head bounding boxes to aid object detection models.
- Detailed annotations with wheat head bounding boxes to aid [object detection](https://www.ultralytics.com/glossary/object-detection) models.
These features facilitate the development of robust models capable of generalization across multiple regions.

View file

@ -6,7 +6,7 @@ keywords: Ultralytics, YOLO, object detection datasets, dataset formats, COCO, d
# Object Detection Datasets Overview
Training a robust and accurate object detection model requires a comprehensive dataset. This guide introduces various formats of datasets that are compatible with the Ultralytics YOLO model and provides insights into their structure, usage, and how to convert between different formats.
Training a robust and accurate [object detection](https://www.ultralytics.com/glossary/object-detection) model requires a comprehensive dataset. This guide introduces various formats of datasets that are compatible with the Ultralytics YOLO model and provides insights into their structure, usage, and how to convert between different formats.
## Supported Dataset Formats

View file

@ -6,7 +6,7 @@ keywords: LVIS dataset, object detection, instance segmentation, Facebook AI Res
# LVIS Dataset
The [LVIS dataset](https://www.lvisdataset.org/) is a large-scale, fine-grained vocabulary-level annotation dataset developed and released by Facebook AI Research (FAIR). It is primarily used as a research benchmark for object detection and instance segmentation with a large vocabulary of categories, aiming to drive further advancements in computer vision field.
The [LVIS dataset](https://www.lvisdataset.org/) is a large-scale, fine-grained vocabulary-level annotation dataset developed and released by Facebook AI Research (FAIR). It is primarily used as a research benchmark for object detection and [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation) with a large vocabulary of categories, aiming to drive further advancements in computer vision field.
<p align="center">
<br>
@ -28,7 +28,7 @@ The [LVIS dataset](https://www.lvisdataset.org/) is a large-scale, fine-grained
- LVIS contains 160k images and 2M instance annotations for object detection, segmentation, and captioning tasks.
- The dataset comprises 1203 object categories, including common objects like cars, bicycles, and animals, as well as more specific categories such as umbrellas, handbags, and sports equipment.
- Annotations include object bounding boxes, segmentation masks, and captions for each image.
- LVIS provides standardized evaluation metrics like mean Average Precision (mAP) for object detection, and mean Average Recall (mAR) for segmentation tasks, making it suitable for comparing model performance.
- LVIS provides standardized evaluation metrics like [mean Average Precision](https://www.ultralytics.com/glossary/mean-average-precision-map) (mAP) for object detection, and mean Average [Recall](https://www.ultralytics.com/glossary/recall) (mAR) for segmentation tasks, making it suitable for comparing model performance.
- LVIS uses exactly the same images as [COCO](./coco.md) dataset, but with different splits and different annotations.
## Dataset Structure
@ -42,7 +42,7 @@ The LVIS dataset is split into three subsets:
## Applications
The LVIS dataset is widely used for training and evaluating deep learning models in object detection (such as YOLO, Faster R-CNN, and SSD), instance segmentation (such as Mask R-CNN). The dataset's diverse set of object categories, large number of annotated images, and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners.
The LVIS dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in object detection (such as YOLO, Faster R-CNN, and SSD), instance segmentation (such as Mask R-CNN). The dataset's diverse set of object categories, large number of annotated images, and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners.
## Dataset YAML
@ -56,7 +56,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n model on the LVIS dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n model on the LVIS dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -106,7 +106,7 @@ If you use the LVIS dataset in your research or development work, please cite th
}
```
We would like to acknowledge the LVIS Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the LVIS dataset and its creators, visit the [LVIS dataset website](https://www.lvisdataset.org/).
We would like to acknowledge the LVIS Consortium for creating and maintaining this valuable resource for the [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) community. For more information about the LVIS dataset and its creators, visit the [LVIS dataset website](https://www.lvisdataset.org/).
## FAQ
@ -144,11 +144,11 @@ For detailed training configurations, refer to the [Training](../../modes/train.
### How does the LVIS dataset differ from the COCO dataset?
The images in the LVIS dataset are the same as those in the [COCO dataset](./coco.md), but the two differ in terms of splitting and annotations. LVIS provides a larger and more detailed vocabulary with 1203 object categories compared to COCO's 80 categories. Additionally, LVIS focuses on annotation completeness and diversity, aiming to push the limits of object detection and instance segmentation models by offering more nuanced and comprehensive data.
The images in the LVIS dataset are the same as those in the [COCO dataset](./coco.md), but the two differ in terms of splitting and annotations. LVIS provides a larger and more detailed vocabulary with 1203 object categories compared to COCO's 80 categories. Additionally, LVIS focuses on annotation completeness and diversity, aiming to push the limits of [object detection](https://www.ultralytics.com/glossary/object-detection) and instance segmentation models by offering more nuanced and comprehensive data.
### Why should I use Ultralytics YOLO for training on the LVIS dataset?
Ultralytics YOLO models, including the latest YOLOv8, are optimized for real-time object detection with state-of-the-art accuracy and speed. They support a wide range of annotations, such as the fine-grained ones provided by the LVIS dataset, making them ideal for advanced computer vision applications. Moreover, Ultralytics offers seamless integration with various [training](../../modes/train.md), [validation](../../modes/val.md), and [prediction](../../modes/predict.md) modes, ensuring efficient model development and deployment.
Ultralytics YOLO models, including the latest YOLOv8, are optimized for real-time object detection with state-of-the-art [accuracy](https://www.ultralytics.com/glossary/accuracy) and speed. They support a wide range of annotations, such as the fine-grained ones provided by the LVIS dataset, making them ideal for advanced computer vision applications. Moreover, Ultralytics offers seamless integration with various [training](../../modes/train.md), [validation](../../modes/val.md), and [prediction](../../modes/predict.md) modes, ensuring efficient model development and deployment.
### Can I see some sample annotations from the LVIS dataset?

View file

@ -24,7 +24,7 @@ The Objects365 dataset is organized into a single set of images with correspondi
## Applications
The Objects365 dataset is widely used for training and evaluating deep learning models in object detection tasks. The dataset's diverse set of object categories and high-quality annotations make it a valuable resource for researchers and practitioners in the field of computer vision.
The Objects365 dataset is widely used for training and evaluating deep learning models in object detection tasks. The dataset's diverse set of object categories and high-quality annotations make it a valuable resource for researchers and practitioners in the field of [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv).
## Dataset YAML
@ -38,7 +38,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n model on the Objects365 dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n model on the Objects365 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -63,7 +63,7 @@ To train a YOLOv8n model on the Objects365 dataset for 100 epochs with an image
## Sample Data and Annotations
The Objects365 dataset contains a diverse set of high-resolution images with objects from 365 categories, providing rich context for object detection tasks. Here are some examples of the images in the dataset:
The Objects365 dataset contains a diverse set of high-resolution images with objects from 365 categories, providing rich context for [object detection](https://www.ultralytics.com/glossary/object-detection) tasks. Here are some examples of the images in the dataset:
![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/objects365-sample-image.avif)
@ -95,7 +95,7 @@ We would like to acknowledge the team of researchers who created and maintain th
### What is the Objects365 dataset used for?
The [Objects365 dataset](https://www.objects365.org/) is designed for object detection tasks in machine learning and computer vision. It provides a large-scale, high-quality dataset with 2 million annotated images and 30 million bounding boxes across 365 categories. Leveraging such a diverse dataset helps improve the performance and generalization of object detection models, making it invaluable for research and development in the field.
The [Objects365 dataset](https://www.objects365.org/) is designed for object detection tasks in [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and computer vision. It provides a large-scale, high-quality dataset with 2 million annotated images and 30 million bounding boxes across 365 categories. Leveraging such a diverse dataset helps improve the performance and generalization of object detection models, making it invaluable for research and development in the field.
### How can I train a YOLOv8 model on the Objects365 dataset?
@ -138,4 +138,4 @@ The YAML configuration file for the Objects365 dataset is available at [Objects3
### How does the dataset structure of Objects365 enhance object detection modeling?
The [Objects365 dataset](https://www.objects365.org/) is organized with 2 million high-resolution images and comprehensive annotations of over 30 million bounding boxes. This structure ensures a robust dataset for training deep learning models in object detection, offering a wide variety of objects and scenarios. Such diversity and volume help in developing models that are more accurate and capable of generalizing well to real-world applications. For more details on the dataset structure, refer to the [Dataset YAML](#dataset-yaml) section.
The [Objects365 dataset](https://www.objects365.org/) is organized with 2 million high-resolution images and comprehensive annotations of over 30 million bounding boxes. This structure ensures a robust dataset for training [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in object detection, offering a wide variety of objects and scenarios. Such diversity and volume help in developing models that are more accurate and capable of generalizing well to real-world applications. For more details on the dataset structure, refer to the [Dataset YAML](#dataset-yaml) section.

View file

@ -6,7 +6,7 @@ keywords: Open Images V7, Google dataset, computer vision, YOLOv8 models, object
# Open Images V7 Dataset
[Open Images V7](https://storage.googleapis.com/openimages/web/index.html) is a versatile and expansive dataset championed by Google. Aimed at propelling research in the realm of computer vision, it boasts a vast collection of images annotated with a plethora of data, including image-level labels, object bounding boxes, object segmentation masks, visual relationships, and localized narratives.
[Open Images V7](https://storage.googleapis.com/openimages/web/index.html) is a versatile and expansive dataset championed by Google. Aimed at propelling research in the realm of [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv), it boasts a vast collection of images annotated with a plethora of data, including image-level labels, object bounding boxes, object segmentation masks, visual relationships, and localized narratives.
<p align="center">
<br>
@ -16,7 +16,7 @@ keywords: Open Images V7, Google dataset, computer vision, YOLOv8 models, object
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Object Detection using OpenImagesV7 Pretrained Model
<strong>Watch:</strong> [Object Detection](https://www.ultralytics.com/glossary/object-detection) using OpenImagesV7 Pretrained Model
</p>
## Open Images V7 Pretrained Models
@ -34,13 +34,13 @@ keywords: Open Images V7, Google dataset, computer vision, YOLOv8 models, object
## Key Features
- Encompasses ~9M images annotated in various ways to suit multiple computer vision tasks.
- Houses a staggering 16M bounding boxes across 600 object classes in 1.9M images. These boxes are primarily hand-drawn by experts ensuring high precision.
- Houses a staggering 16M bounding boxes across 600 object classes in 1.9M images. These boxes are primarily hand-drawn by experts ensuring high [precision](https://www.ultralytics.com/glossary/precision).
- Visual relationship annotations totaling 3.3M are available, detailing 1,466 unique relationship triplets, object properties, and human activities.
- V5 introduced segmentation masks for 2.8M objects across 350 classes.
- V6 introduced 675k localized narratives that amalgamate voice, text, and mouse traces highlighting described objects.
- V7 introduced 66.4M point-level labels on 1.4M images, spanning 5,827 classes.
- Encompasses 61.4M image-level labels across a diverse set of 20,638 classes.
- Provides a unified platform for image classification, object detection, relationship detection, instance segmentation, and multimodal image descriptions.
- Provides a unified platform for image classification, object detection, relationship detection, [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation), and multimodal image descriptions.
## Dataset Structure
@ -51,7 +51,7 @@ Open Images V7 is structured in multiple components catering to varied computer
- **Segmentation Masks**: These detail the exact boundary of 2.8M objects across 350 classes.
- **Visual Relationships**: 3.3M annotations indicating object relationships, properties, and actions.
- **Localized Narratives**: 675k descriptions combining voice, text, and mouse traces.
- **Point-Level Labels**: 66.4M labels across 1.4M images, suitable for zero/few-shot semantic segmentation.
- **Point-Level Labels**: 66.4M labels across 1.4M images, suitable for zero/few-shot [semantic segmentation](https://www.ultralytics.com/glossary/semantic-segmentation).
## Applications
@ -69,7 +69,7 @@ Typically, datasets come with a YAML (Yet Another Markup Language) file that del
## Usage
To train a YOLOv8n model on the Open Images V7 dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n model on the Open Images V7 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! warning
@ -191,10 +191,10 @@ Ultralytics provides several YOLOv8 pretrained models for the Open Images V7 dat
The Open Images V7 dataset supports a variety of computer vision tasks including:
- **Image Classification**
- **[Image Classification](https://www.ultralytics.com/glossary/image-classification)**
- **Object Detection**
- **Instance Segmentation**
- **Visual Relationship Detection**
- **Multimodal Image Descriptions**
Its comprehensive annotations and broad scope make it suitable for training and evaluating advanced machine learning models, as highlighted in practical use cases detailed in our [applications](#applications) section.
Its comprehensive annotations and broad scope make it suitable for training and evaluating advanced [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) models, as highlighted in practical use cases detailed in our [applications](#applications) section.

View file

@ -35,7 +35,7 @@ This structure enables a diverse and extensive testing ground for object detecti
## Benchmarking
Dataset benchmarking evaluates machine learning model performance on specific datasets using standardized metrics like accuracy, mean average precision and F1-score.
Dataset benchmarking evaluates machine learning model performance on specific datasets using standardized metrics like [accuracy](https://www.ultralytics.com/glossary/accuracy), [mean average precision](https://www.ultralytics.com/glossary/mean-average-precision-map) and F1-score.
!!! tip "Benchmarking"
@ -85,7 +85,7 @@ Dataset benchmarking evaluates machine learning model performance on specific da
## Applications
Roboflow 100 is invaluable for various applications related to computer vision and deep learning. Researchers and engineers can use this benchmark to:
Roboflow 100 is invaluable for various applications related to [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) and [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl). Researchers and engineers can use this benchmark to:
- Evaluate the performance of object detection models in a multi-domain context.
- Test the adaptability of models to real-world scenarios beyond common object recognition.
@ -127,7 +127,7 @@ If you use the Roboflow 100 dataset in your research or development work, please
Our thanks go to the Roboflow team and all the contributors for their hard work in creating and sustaining the Roboflow 100 dataset.
If you are interested in exploring more datasets to enhance your object detection and machine learning projects, feel free to visit [our comprehensive dataset collection](../index.md).
If you are interested in exploring more datasets to enhance your object detection and [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) projects, feel free to visit [our comprehensive dataset collection](../index.md).
## FAQ
@ -183,7 +183,7 @@ To use the Roboflow 100 dataset for benchmarking, you can implement the RF100Ben
### Which domains are covered by the Roboflow 100 dataset?
The **Roboflow 100** dataset spans seven domains, each providing unique challenges and applications for object detection models:
The **Roboflow 100** dataset spans seven domains, each providing unique challenges and applications for [object detection](https://www.ultralytics.com/glossary/object-detection) models:
1. **Aerial**: 7 datasets, 9,683 images, 24 classes
2. **Video Games**: 7 datasets, 11,579 images, 88 classes

View file

@ -6,7 +6,7 @@ keywords: Signature Detection Dataset, document verification, fraud detection, c
# Signature Detection Dataset
This dataset focuses on detecting human written signatures within documents. It includes a variety of document types with annotated signatures, providing valuable insights for applications in document verification and fraud detection. Essential for training computer vision algorithms, this dataset aids in identifying signatures in various document formats, supporting research and practical applications in document analysis.
This dataset focuses on detecting human written signatures within documents. It includes a variety of document types with annotated signatures, providing valuable insights for applications in document verification and fraud detection. Essential for training [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) algorithms, this dataset aids in identifying signatures in various document formats, supporting research and practical applications in document analysis.
## Dataset Structure
@ -31,7 +31,7 @@ A YAML (Yet Another Markup Language) file defines the dataset configuration, inc
## Usage
To train a YOLOv8n model on the signature detection dataset for 100 epochs with an image size of 640, use the provided code samples. For a comprehensive list of available parameters, refer to the model's [Training](../../modes/train.md) page.
To train a YOLOv8n model on the signature detection dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, use the provided code samples. For a comprehensive list of available parameters, refer to the model's [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -93,7 +93,7 @@ The dataset has been released available under the [AGPL-3.0 License](https://git
### What is the Signature Detection Dataset, and how can it be used?
The Signature Detection Dataset is a collection of annotated images aimed at detecting human signatures within various document types. It can be applied in computer vision tasks such as object detection and tracking, primarily for document verification, fraud detection, and archival research. This dataset helps train models to recognize signatures in different contexts, making it valuable for both research and practical applications.
The Signature Detection Dataset is a collection of annotated images aimed at detecting human signatures within various document types. It can be applied in computer vision tasks such as [object detection](https://www.ultralytics.com/glossary/object-detection) and tracking, primarily for document verification, fraud detection, and archival research. This dataset helps train models to recognize signatures in different contexts, making it valuable for both research and practical applications.
### How do I train a YOLOv8n model on the Signature Detection Dataset?
@ -131,7 +131,7 @@ The Signature Detection Dataset can be used for:
1. **Document Verification**: Automatically verifying the presence and authenticity of human signatures in documents.
2. **Fraud Detection**: Identifying forged or fraudulent signatures in legal and financial documents.
3. **Archival Research**: Assisting historians and archivists in the digital analysis and cataloging of historical documents.
4. **Education**: Supporting academic research and teaching in the fields of computer vision and machine learning.
4. **Education**: Supporting academic research and teaching in the fields of computer vision and [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml).
### How can I perform inference using a model trained on the Signature Detection Dataset?

View file

@ -6,7 +6,7 @@ keywords: SKU-110k, dataset, object detection, retail shelf images, deep learnin
# SKU-110k Dataset
The [SKU-110k](https://github.com/eg4000/SKU110K_CVPR19) dataset is a collection of densely packed retail shelf images, designed to support research in object detection tasks. Developed by Eran Goldman et al., the dataset contains over 110,000 unique store keeping unit (SKU) categories with densely packed objects, often looking similar or even identical, positioned in close proximity.
The [SKU-110k](https://github.com/eg4000/SKU110K_CVPR19) dataset is a collection of densely packed retail shelf images, designed to support research in [object detection](https://www.ultralytics.com/glossary/object-detection) tasks. Developed by Eran Goldman et al., the dataset contains over 110,000 unique store keeping unit (SKU) categories with densely packed objects, often looking similar or even identical, positioned in close proximity.
<p align="center">
<br>
@ -37,7 +37,7 @@ The SKU-110k dataset is organized into three main subsets:
## Applications
The SKU-110k dataset is widely used for training and evaluating deep learning models in object detection tasks, especially in densely packed scenes such as retail shelf displays. The dataset's diverse set of SKU categories and densely packed object arrangements make it a valuable resource for researchers and practitioners in the field of computer vision.
The SKU-110k dataset is widely used for training and evaluating deep learning models in object detection tasks, especially in densely packed scenes such as retail shelf displays. The dataset's diverse set of SKU categories and densely packed object arrangements make it a valuable resource for researchers and practitioners in the field of [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv).
## Dataset YAML
@ -51,7 +51,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n model on the SKU-110K dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n model on the SKU-110K dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -151,7 +151,7 @@ Refer to the [Dataset Structure](#dataset-structure) section for more details.
The SKU-110k dataset configuration is defined in a YAML file, which includes details about the dataset's paths, classes, and other relevant information. The `SKU-110K.yaml` file is maintained at [SKU-110K.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/SKU-110K.yaml). For example, you can train a model using this configuration as shown in our [Usage](#usage) section.
### What are the key features of the SKU-110k dataset in the context of deep learning?
### What are the key features of the SKU-110k dataset in the context of [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl)?
The SKU-110k dataset features images of store shelves from around the world, showcasing densely packed objects that pose significant challenges for object detectors:

View file

@ -6,7 +6,7 @@ keywords: VisDrone, drone dataset, computer vision, object detection, object tra
# VisDrone Dataset
The [VisDrone Dataset](https://github.com/VisDrone/VisDrone-Dataset) is a large-scale benchmark created by the AISKYEYE team at the Lab of Machine Learning and Data Mining, Tianjin University, China. It contains carefully annotated ground truth data for various computer vision tasks related to drone-based image and video analysis.
The [VisDrone Dataset](https://github.com/VisDrone/VisDrone-Dataset) is a large-scale benchmark created by the AISKYEYE team at the Lab of [Machine Learning](https://www.ultralytics.com/glossary/machine-learning-ml) and Data Mining, Tianjin University, China. It contains carefully annotated ground truth data for various computer vision tasks related to drone-based image and video analysis.
<p align="center">
<br>
@ -33,7 +33,7 @@ The VisDrone dataset is organized into five main subsets, each focusing on a spe
## Applications
The VisDrone dataset is widely used for training and evaluating deep learning models in drone-based computer vision tasks such as object detection, object tracking, and crowd counting. The dataset's diverse set of sensor data, object annotations, and attributes make it a valuable resource for researchers and practitioners in the field of drone-based computer vision.
The VisDrone dataset is widely used for training and evaluating deep learning models in drone-based [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) tasks such as object detection, object tracking, and crowd counting. The dataset's diverse set of sensor data, object annotations, and attributes make it a valuable resource for researchers and practitioners in the field of drone-based computer vision.
## Dataset YAML
@ -47,7 +47,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n model on the VisDrone dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n model on the VisDrone dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -76,7 +76,7 @@ The VisDrone dataset contains a diverse set of images and videos captured by dro
![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/visdrone-object-detection-sample.avif)
- **Task 1**: Object detection in images - This image demonstrates an example of object detection in images, where objects are annotated with bounding boxes. The dataset provides a wide variety of images taken from different locations, environments, and densities to facilitate the development of models for this task.
- **Task 1**: [Object detection](https://www.ultralytics.com/glossary/object-detection) in images - This image demonstrates an example of object detection in images, where objects are annotated with bounding boxes. The dataset provides a wide variety of images taken from different locations, environments, and densities to facilitate the development of models for this task.
The example showcases the variety and complexity of the data in the VisDrone dataset and highlights the importance of high-quality sensor data for drone-based computer vision tasks.
@ -100,7 +100,7 @@ If you use the VisDrone dataset in your research or development work, please cit
doi={10.1109/TPAMI.2021.3119563}}
```
We would like to acknowledge the AISKYEYE team at the Lab of Machine Learning and Data Mining, Tianjin University, China, for creating and maintaining the VisDrone dataset as a valuable resource for the drone-based computer vision research community. For more information about the VisDrone dataset and its creators, visit the [VisDrone Dataset GitHub repository](https://github.com/VisDrone/VisDrone-Dataset).
We would like to acknowledge the AISKYEYE team at the Lab of Machine Learning and [Data Mining](https://www.ultralytics.com/glossary/data-mining), Tianjin University, China, for creating and maintaining the VisDrone dataset as a valuable resource for the drone-based computer vision research community. For more information about the VisDrone dataset and its creators, visit the [VisDrone Dataset GitHub repository](https://github.com/VisDrone/VisDrone-Dataset).
## FAQ
@ -150,7 +150,7 @@ The VisDrone dataset is divided into five main subsets, each tailored for a spec
4. **Task 4**: Multi-object tracking.
5. **Task 5**: Crowd counting.
These subsets are widely used for training and evaluating deep learning models in drone-based applications such as surveillance, traffic monitoring, and public safety.
These subsets are widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in drone-based applications such as surveillance, traffic monitoring, and public safety.
### Where can I find the configuration file for the VisDrone dataset in Ultralytics?

View file

@ -13,7 +13,7 @@ The [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/) (Visual Object Classes
- VOC dataset includes two main challenges: VOC2007 and VOC2012.
- The dataset comprises 20 object categories, including common objects like cars, bicycles, and animals, as well as more specific categories such as boats, sofas, and dining tables.
- Annotations include object bounding boxes and class labels for object detection and classification tasks, and segmentation masks for the segmentation tasks.
- VOC provides standardized evaluation metrics like mean Average Precision (mAP) for object detection and classification, making it suitable for comparing model performance.
- VOC provides standardized evaluation metrics like [mean Average Precision](https://www.ultralytics.com/glossary/mean-average-precision-map) (mAP) for object detection and classification, making it suitable for comparing model performance.
## Dataset Structure
@ -25,7 +25,7 @@ The VOC dataset is split into three subsets:
## Applications
The VOC dataset is widely used for training and evaluating deep learning models in object detection (such as YOLO, Faster R-CNN, and SSD), instance segmentation (such as Mask R-CNN), and image classification. The dataset's diverse set of object categories, large number of annotated images, and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners.
The VOC dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in object detection (such as YOLO, Faster R-CNN, and SSD), [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation) (such as Mask R-CNN), and [image classification](https://www.ultralytics.com/glossary/image-classification). The dataset's diverse set of object categories, large number of annotated images, and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners.
## Dataset YAML
@ -39,7 +39,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a YOLOv8n model on the VOC dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a YOLOv8n model on the VOC dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -91,13 +91,13 @@ If you use the VOC dataset in your research or development work, please cite the
}
```
We would like to acknowledge the PASCAL VOC Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the VOC dataset and its creators, visit the [PASCAL VOC dataset website](http://host.robots.ox.ac.uk/pascal/VOC/).
We would like to acknowledge the PASCAL VOC Consortium for creating and maintaining this valuable resource for the [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) community. For more information about the VOC dataset and its creators, visit the [PASCAL VOC dataset website](http://host.robots.ox.ac.uk/pascal/VOC/).
## FAQ
### What is the PASCAL VOC dataset and why is it important for computer vision tasks?
The [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/) (Visual Object Classes) dataset is a renowned benchmark for object detection, segmentation, and classification in computer vision. It includes comprehensive annotations like bounding boxes, class labels, and segmentation masks across 20 different object categories. Researchers use it widely to evaluate the performance of models like Faster R-CNN, YOLO, and Mask R-CNN due to its standardized evaluation metrics such as mean Average Precision (mAP).
The [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/) (Visual Object Classes) dataset is a renowned benchmark for [object detection](https://www.ultralytics.com/glossary/object-detection), segmentation, and classification in computer vision. It includes comprehensive annotations like bounding boxes, class labels, and segmentation masks across 20 different object categories. Researchers use it widely to evaluate the performance of models like Faster R-CNN, YOLO, and Mask R-CNN due to its standardized evaluation metrics such as mean Average Precision (mAP).
### How do I train a YOLOv8 model using the VOC dataset?
@ -130,8 +130,8 @@ The VOC dataset includes two main challenges: VOC2007 and VOC2012. These challen
### How does the PASCAL VOC dataset enhance model benchmarking and evaluation?
The PASCAL VOC dataset enhances model benchmarking and evaluation through its detailed annotations and standardized metrics like mean Average Precision (mAP). These metrics are crucial for assessing the performance of object detection and classification models. The dataset's diverse and complex images ensure comprehensive model evaluation across various real-world scenarios.
The PASCAL VOC dataset enhances model benchmarking and evaluation through its detailed annotations and standardized metrics like mean Average [Precision](https://www.ultralytics.com/glossary/precision) (mAP). These metrics are crucial for assessing the performance of object detection and classification models. The dataset's diverse and complex images ensure comprehensive model evaluation across various real-world scenarios.
### How do I use the VOC dataset for semantic segmentation in YOLO models?
### How do I use the VOC dataset for [semantic segmentation](https://www.ultralytics.com/glossary/semantic-segmentation) in YOLO models?
To use the VOC dataset for semantic segmentation tasks with YOLO models, you need to configure the dataset properly in a YAML file. The YAML file defines paths and classes needed for training segmentation models. Check the VOC dataset YAML configuration file at [VOC.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/VOC.yaml) for detailed setups.

View file

@ -6,7 +6,7 @@ keywords: xView dataset, overhead imagery, satellite images, object detection, h
# xView Dataset
The [xView](http://xviewdataset.org/) dataset is one of the largest publicly available datasets of overhead imagery, containing images from complex scenes around the world annotated using bounding boxes. The goal of the xView dataset is to accelerate progress in four computer vision frontiers:
The [xView](http://xviewdataset.org/) dataset is one of the largest publicly available datasets of overhead imagery, containing images from complex scenes around the world annotated using bounding boxes. The goal of the xView dataset is to accelerate progress in four [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) frontiers:
1. Reduce minimum resolution for detection.
2. Improve learning efficiency.
@ -19,8 +19,8 @@ xView builds on the success of challenges like Common Objects in Context (COCO)
- xView contains over 1 million object instances across 60 classes.
- The dataset has a resolution of 0.3 meters, providing higher resolution imagery than most public satellite imagery datasets.
- xView features a diverse collection of small, rare, fine-grained, and multi-type objects with bounding box annotation.
- Comes with a pre-trained baseline model using the TensorFlow object detection API and an example for PyTorch.
- xView features a diverse collection of small, rare, fine-grained, and multi-type objects with [bounding box](https://www.ultralytics.com/glossary/bounding-box) annotation.
- Comes with a pre-trained baseline model using the TensorFlow object detection API and an example for [PyTorch](https://www.ultralytics.com/glossary/pytorch).
## Dataset Structure
@ -42,7 +42,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
## Usage
To train a model on the xView dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
To train a model on the xView dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -71,7 +71,7 @@ The xView dataset contains high-resolution satellite images with a diverse set o
![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/overhead-imagery-object-detection.avif)
- **Overhead Imagery**: This image demonstrates an example of object detection in overhead imagery, where objects are annotated with bounding boxes. The dataset provides high-resolution satellite images to facilitate the development of models for this task.
- **Overhead Imagery**: This image demonstrates an example of [object detection](https://www.ultralytics.com/glossary/object-detection) in overhead imagery, where objects are annotated with bounding boxes. The dataset provides high-resolution satellite images to facilitate the development of models for this task.
The example showcases the variety and complexity of the data in the xView dataset and highlights the importance of high-quality satellite imagery for object detection tasks.
@ -137,11 +137,11 @@ The xView dataset stands out due to its comprehensive set of features:
- Over 1 million object instances across 60 distinct classes.
- High-resolution imagery at 0.3 meters.
- Diverse object types including small, rare, and fine-grained objects, all annotated with bounding boxes.
- Availability of a pre-trained baseline model and examples in TensorFlow and PyTorch.
- Availability of a pre-trained baseline model and examples in [TensorFlow](https://www.ultralytics.com/glossary/tensorflow) and PyTorch.
### What is the dataset structure of xView, and how is it annotated?
The xView dataset comprises high-resolution satellite images collected from WorldView-3 satellites at a 0.3m ground sample distance. It encompasses over 1 million objects across 60 classes in approximately 1,400 km² of imagery. Each object within the dataset is annotated with bounding boxes, making it ideal for training and evaluating deep learning models for object detection in overhead imagery. For a detailed overview, you can look at the dataset structure section [here](#dataset-structure).
The xView dataset comprises high-resolution satellite images collected from WorldView-3 satellites at a 0.3m ground sample distance. It encompasses over 1 million objects across 60 classes in approximately 1,400 km² of imagery. Each object within the dataset is annotated with bounding boxes, making it ideal for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models for object detection in overhead imagery. For a detailed overview, you can look at the dataset structure section [here](#dataset-structure).
### How do I cite the xView dataset in my research?