Add Docs glossary links (#16448)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
8b8c25f216
commit
443fbce194
193 changed files with 1124 additions and 1124 deletions
|
|
@ -6,7 +6,7 @@ keywords: CIFAR-10, dataset, machine learning, computer vision, image classifica
|
|||
|
||||
# CIFAR-10 Dataset
|
||||
|
||||
The [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) (Canadian Institute For Advanced Research) dataset is a collection of images used widely for machine learning and computer vision algorithms. It was developed by researchers at the CIFAR institute and consists of 60,000 32x32 color images in 10 different classes.
|
||||
The [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) (Canadian Institute For Advanced Research) dataset is a collection of images used widely for [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and computer vision algorithms. It was developed by researchers at the CIFAR institute and consists of 60,000 32x32 color images in 10 different classes.
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
|
|
@ -16,7 +16,7 @@ The [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) (Canadian Institute
|
|||
allowfullscreen>
|
||||
</iframe>
|
||||
<br>
|
||||
<strong>Watch:</strong> How to Train an Image Classification Model with CIFAR-10 Dataset using Ultralytics YOLOv8
|
||||
<strong>Watch:</strong> How to Train an [Image Classification](https://www.ultralytics.com/glossary/image-classification) Model with CIFAR-10 Dataset using Ultralytics YOLOv8
|
||||
</p>
|
||||
|
||||
## Key Features
|
||||
|
|
@ -36,7 +36,7 @@ The CIFAR-10 dataset is split into two subsets:
|
|||
|
||||
## Applications
|
||||
|
||||
The CIFAR-10 dataset is widely used for training and evaluating deep learning models in image classification tasks, such as Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), and various other machine learning algorithms. The diversity of the dataset in terms of classes and the presence of color images make it a well-rounded dataset for research and development in the field of machine learning and computer vision.
|
||||
The CIFAR-10 dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in image classification tasks, such as [Convolutional Neural Networks](https://www.ultralytics.com/glossary/convolutional-neural-network-cnn) (CNNs), Support Vector Machines (SVMs), and various other machine learning algorithms. The diversity of the dataset in terms of classes and the presence of color images make it a well-rounded dataset for research and development in the field of machine learning and computer vision.
|
||||
|
||||
## Usage
|
||||
|
||||
|
|
@ -88,13 +88,13 @@ If you use the CIFAR-10 dataset in your research or development work, please cit
|
|||
}
|
||||
```
|
||||
|
||||
We would like to acknowledge Alex Krizhevsky for creating and maintaining the CIFAR-10 dataset as a valuable resource for the machine learning and computer vision research community. For more information about the CIFAR-10 dataset and its creator, visit the [CIFAR-10 dataset website](https://www.cs.toronto.edu/~kriz/cifar.html).
|
||||
We would like to acknowledge Alex Krizhevsky for creating and maintaining the CIFAR-10 dataset as a valuable resource for the machine learning and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) research community. For more information about the CIFAR-10 dataset and its creator, visit the [CIFAR-10 dataset website](https://www.cs.toronto.edu/~kriz/cifar.html).
|
||||
|
||||
## FAQ
|
||||
|
||||
### How can I train a YOLO model on the CIFAR-10 dataset?
|
||||
|
||||
To train a YOLO model on the CIFAR-10 dataset using Ultralytics, you can follow the examples provided for both Python and CLI. Here is a basic example to train your model for 100 epochs with an image size of 32x32 pixels:
|
||||
To train a YOLO model on the CIFAR-10 dataset using Ultralytics, you can follow the examples provided for both Python and CLI. Here is a basic example to train your model for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 32x32 pixels:
|
||||
|
||||
!!! example
|
||||
|
||||
|
|
@ -138,7 +138,7 @@ This diverse dataset is essential for training image classification models in fi
|
|||
|
||||
### Why use the CIFAR-10 dataset for image classification tasks?
|
||||
|
||||
The CIFAR-10 dataset is an excellent benchmark for image classification due to its diversity and structure. It contains a balanced mix of 60,000 labeled images across 10 different categories, which helps in training robust and generalized models. It is widely used for evaluating deep learning models, including Convolutional Neural Networks (CNNs) and other machine learning algorithms. The dataset is relatively small, making it suitable for quick experimentation and algorithm development. Explore its numerous applications in the [applications](#applications) section.
|
||||
The CIFAR-10 dataset is an excellent benchmark for image classification due to its diversity and structure. It contains a balanced mix of 60,000 labeled images across 10 different categories, which helps in training robust and generalized models. It is widely used for evaluating deep learning models, including Convolutional [Neural Networks](https://www.ultralytics.com/glossary/neural-network-nn) (CNNs) and other machine learning algorithms. The dataset is relatively small, making it suitable for quick experimentation and algorithm development. Explore its numerous applications in the [applications](#applications) section.
|
||||
|
||||
### How is the CIFAR-10 dataset structured?
|
||||
|
||||
|
|
@ -170,4 +170,4 @@ Acknowledging the dataset's creators helps support continued research and develo
|
|||
|
||||
### What are some practical examples of using the CIFAR-10 dataset?
|
||||
|
||||
The CIFAR-10 dataset is often used for training image classification models, such as Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs). These models can be employed in various computer vision tasks including object detection, image recognition, and automated tagging. To see some practical examples, check the code snippets in the [usage](#usage) section.
|
||||
The CIFAR-10 dataset is often used for training image classification models, such as Convolutional Neural Networks (CNNs) and [Support Vector Machines](https://www.ultralytics.com/glossary/support-vector-machine-svm) (SVMs). These models can be employed in various computer vision tasks including [object detection](https://www.ultralytics.com/glossary/object-detection), [image recognition](https://www.ultralytics.com/glossary/image-recognition), and automated tagging. To see some practical examples, check the code snippets in the [usage](#usage) section.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue