Add EMA and model checkpointing (#49)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
27d6545117
commit
4291b9c31c
6 changed files with 55 additions and 21 deletions
|
|
@ -30,19 +30,16 @@ class BaseValidator:
|
|||
Supports validation of a pre-trained model if passed or a model being trained
|
||||
if trainer is passed (trainer gets priority).
|
||||
"""
|
||||
training = trainer is not None
|
||||
self.training = training
|
||||
# trainer = trainer or self.trainer_class.get_trainer()
|
||||
assert training or model is not None, "Either trainer or model is needed for validation"
|
||||
if training:
|
||||
model = trainer.model
|
||||
self.training = trainer is not None
|
||||
if self.training:
|
||||
model = trainer.ema.ema or trainer.model
|
||||
self.args.half &= self.device.type != 'cpu'
|
||||
# NOTE: half() inference in evaluation will make training stuck,
|
||||
# so I comment it out for now, I think we can reuse half mode after we add EMA.
|
||||
# model = model.half() if self.args.half else model
|
||||
model = model.half() if self.args.half else model.float()
|
||||
else: # TODO: handle this when detectMultiBackend is supported
|
||||
assert model is not None, "Either trainer or model is needed for validation"
|
||||
# model = DetectMultiBacked(model)
|
||||
pass
|
||||
# TODO: implement init_model_attributes()
|
||||
|
||||
model.eval()
|
||||
|
|
@ -50,7 +47,7 @@ class BaseValidator:
|
|||
loss = 0
|
||||
n_batches = len(self.dataloader)
|
||||
desc = self.get_desc()
|
||||
bar = tqdm(self.dataloader, desc, n_batches, not training, bar_format=TQDM_BAR_FORMAT)
|
||||
bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
|
||||
self.init_metrics(de_parallel(model))
|
||||
with torch.no_grad():
|
||||
for batch_i, batch in enumerate(bar):
|
||||
|
|
@ -67,7 +64,7 @@ class BaseValidator:
|
|||
|
||||
# loss
|
||||
with dt[2]:
|
||||
if training:
|
||||
if self.training:
|
||||
loss += trainer.criterion(preds, batch)[0]
|
||||
|
||||
# pre-process predictions
|
||||
|
|
@ -82,7 +79,7 @@ class BaseValidator:
|
|||
self.print_results()
|
||||
|
||||
# print speeds
|
||||
if not training:
|
||||
if not self.training:
|
||||
t = tuple(x.t / len(self.dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
|
||||
# shape = (self.dataloader.batch_size, 3, imgsz, imgsz)
|
||||
self.logger.info(
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue