Sort alphabetical integrations in docs (#16819)

This commit is contained in:
Jan Knobloch 2024-10-10 15:46:09 +02:00 committed by GitHub
parent 50497218c2
commit 3f341d5dd3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 45 additions and 45 deletions

View file

@ -27,65 +27,65 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
## Training Integrations ## Training Integrations
- [Amazon SageMaker](amazon-sagemaker.md): Leverage Amazon SageMaker to efficiently build, train, and deploy Ultralytics models, providing an all-in-one platform for the ML lifecycle.
- [ClearML](clearml.md): Automate your Ultralytics ML workflows, monitor experiments, and foster team collaboration. - [ClearML](clearml.md): Automate your Ultralytics ML workflows, monitor experiments, and foster team collaboration.
- [Comet ML](comet.md): Enhance your model development with Ultralytics by tracking, comparing, and optimizing your machine learning experiments. - [Comet ML](comet.md): Enhance your model development with Ultralytics by tracking, comparing, and optimizing your machine learning experiments.
- [DVC](dvc.md): Implement version control for your Ultralytics machine learning projects, synchronizing data, code, and models effectively. - [DVC](dvc.md): Implement version control for your Ultralytics machine learning projects, synchronizing data, code, and models effectively.
- [Google Colab](google-colab.md): Use Google Colab to train and evaluate Ultralytics models in a cloud-based environment that supports collaboration and sharing.
- [IBM Watsonx](ibm-watsonx.md): See how IBM Watsonx simplifies the training and evaluation of Ultralytics models with its cutting-edge AI tools, effortless integration, and advanced model management system.
- [JupyterLab](jupyterlab.md): Find out how to use JupyterLab's interactive and customizable environment to train and evaluate Ultralytics models with ease and efficiency.
- [Kaggle](kaggle.md): Explore how you can use Kaggle to train and evaluate Ultralytics models in a cloud-based environment with pre-installed libraries, GPU support, and a vibrant community for collaboration and sharing.
- [MLFlow](mlflow.md): Streamline the entire ML lifecycle of Ultralytics models, from experimentation and reproducibility to deployment. - [MLFlow](mlflow.md): Streamline the entire ML lifecycle of Ultralytics models, from experimentation and reproducibility to deployment.
- [Ultralytics HUB](https://hub.ultralytics.com/): Access and contribute to a community of pre-trained Ultralytics models.
- [Neptune](https://neptune.ai/): Maintain a comprehensive log of your ML experiments with Ultralytics in this metadata store designed for MLOps. - [Neptune](https://neptune.ai/): Maintain a comprehensive log of your ML experiments with Ultralytics in this metadata store designed for MLOps.
- [Paperspace Gradient](paperspace.md): Paperspace Gradient simplifies working on YOLO11 projects by providing easy-to-use cloud tools for training, testing, and deploying your models quickly.
- [Ray Tune](ray-tune.md): Optimize the hyperparameters of your Ultralytics models at any scale. - [Ray Tune](ray-tune.md): Optimize the hyperparameters of your Ultralytics models at any scale.
- [TensorBoard](tensorboard.md): Visualize your Ultralytics ML workflows, monitor model metrics, and foster team collaboration. - [TensorBoard](tensorboard.md): Visualize your Ultralytics ML workflows, monitor model metrics, and foster team collaboration.
- [Ultralytics HUB](https://hub.ultralytics.com/): Access and contribute to a community of pre-trained Ultralytics models.
- [Weights & Biases (W&B)](weights-biases.md): Monitor experiments, visualize metrics, and foster reproducibility and collaboration on Ultralytics projects. - [Weights & Biases (W&B)](weights-biases.md): Monitor experiments, visualize metrics, and foster reproducibility and collaboration on Ultralytics projects.
- [Amazon SageMaker](amazon-sagemaker.md): Leverage Amazon SageMaker to efficiently build, train, and deploy Ultralytics models, providing an all-in-one platform for the ML lifecycle.
- [Paperspace Gradient](paperspace.md): Paperspace Gradient simplifies working on YOLO11 projects by providing easy-to-use cloud tools for training, testing, and deploying your models quickly.
- [Google Colab](google-colab.md): Use Google Colab to train and evaluate Ultralytics models in a cloud-based environment that supports collaboration and sharing.
- [Kaggle](kaggle.md): Explore how you can use Kaggle to train and evaluate Ultralytics models in a cloud-based environment with pre-installed libraries, GPU support, and a vibrant community for collaboration and sharing.
- [JupyterLab](jupyterlab.md): Find out how to use JupyterLab's interactive and customizable environment to train and evaluate Ultralytics models with ease and efficiency.
- [IBM Watsonx](ibm-watsonx.md): See how IBM Watsonx simplifies the training and evaluation of Ultralytics models with its cutting-edge AI tools, effortless integration, and advanced model management system.
## Deployment Integrations ## Deployment Integrations
- [Neural Magic](neural-magic.md): Leverage Quantization Aware Training (QAT) and pruning techniques to optimize Ultralytics models for superior performance and leaner size. - [CoreML](coreml.md): CoreML, developed by [Apple](https://www.apple.com/), is a framework designed for efficiently integrating machine learning models into applications across iOS, macOS, watchOS, and tvOS, using Apple's hardware for effective and secure [model deployment](https://www.ultralytics.com/glossary/model-deployment).
- [Gradio](gradio.md) 🚀 NEW: Deploy Ultralytics models with Gradio for real-time, interactive object detection demos. - [Gradio](gradio.md) 🚀 NEW: Deploy Ultralytics models with Gradio for real-time, interactive object detection demos.
- [TorchScript](torchscript.md): Developed as part of the [PyTorch](https://pytorch.org/) framework, TorchScript enables efficient execution and deployment of machine learning models in various production environments without the need for Python dependencies. - [NCNN](ncnn.md): Developed by [Tencent](http://www.tencent.com/), NCNN is an efficient [neural network](https://www.ultralytics.com/glossary/neural-network-nn) inference framework tailored for mobile devices. It enables direct deployment of AI models into apps, optimizing performance across various mobile platforms.
- [Neural Magic](neural-magic.md): Leverage Quantization Aware Training (QAT) and pruning techniques to optimize Ultralytics models for superior performance and leaner size.
- [ONNX](onnx.md): An open-source format created by [Microsoft](https://www.microsoft.com/) for facilitating the transfer of AI models between various frameworks, enhancing the versatility and deployment flexibility of Ultralytics models. - [ONNX](onnx.md): An open-source format created by [Microsoft](https://www.microsoft.com/) for facilitating the transfer of AI models between various frameworks, enhancing the versatility and deployment flexibility of Ultralytics models.
- [OpenVINO](openvino.md): Intel's toolkit for optimizing and deploying [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) models efficiently across various Intel CPU and GPU platforms. - [OpenVINO](openvino.md): Intel's toolkit for optimizing and deploying [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) models efficiently across various Intel CPU and GPU platforms.
- [TensorRT](tensorrt.md): Developed by [NVIDIA](https://www.nvidia.com/), this high-performance [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) inference framework and model format optimizes AI models for accelerated speed and efficiency on NVIDIA GPUs, ensuring streamlined deployment. - [PaddlePaddle](paddlepaddle.md): An open-source deep learning platform by [Baidu](https://www.baidu.com/), PaddlePaddle enables the efficient deployment of AI models and focuses on the scalability of industrial applications.
- [CoreML](coreml.md): CoreML, developed by [Apple](https://www.apple.com/), is a framework designed for efficiently integrating machine learning models into applications across iOS, macOS, watchOS, and tvOS, using Apple's hardware for effective and secure [model deployment](https://www.ultralytics.com/glossary/model-deployment). - [TF GraphDef](tf-graphdef.md): Developed by [Google](https://www.google.com/), GraphDef is TensorFlow's format for representing computation graphs, enabling optimized execution of machine learning models across diverse hardware.
- [TF SavedModel](tf-savedmodel.md): Developed by [Google](https://www.google.com/), TF SavedModel is a universal serialization format for [TensorFlow](https://www.ultralytics.com/glossary/tensorflow) models, enabling easy sharing and deployment across a wide range of platforms, from servers to edge devices. - [TF SavedModel](tf-savedmodel.md): Developed by [Google](https://www.google.com/), TF SavedModel is a universal serialization format for [TensorFlow](https://www.ultralytics.com/glossary/tensorflow) models, enabling easy sharing and deployment across a wide range of platforms, from servers to edge devices.
- [TF GraphDef](tf-graphdef.md): Developed by [Google](https://www.google.com/), GraphDef is TensorFlow's format for representing computation graphs, enabling optimized execution of machine learning models across diverse hardware. - [TF.js](tfjs.md): Developed by [Google](https://www.google.com/) to facilitate machine learning in browsers and Node.js, TF.js allows JavaScript-based deployment of ML models.
- [TFLite](tflite.md): Developed by [Google](https://www.google.com/), TFLite is a lightweight framework for deploying machine learning models on mobile and edge devices, ensuring fast, efficient inference with minimal memory footprint. - [TFLite](tflite.md): Developed by [Google](https://www.google.com/), TFLite is a lightweight framework for deploying machine learning models on mobile and edge devices, ensuring fast, efficient inference with minimal memory footprint.
- [TFLite Edge TPU](edge-tpu.md): Developed by [Google](https://www.google.com/) for optimizing TensorFlow Lite models on Edge TPUs, this model format ensures high-speed, efficient [edge computing](https://www.ultralytics.com/glossary/edge-computing). - [TFLite Edge TPU](edge-tpu.md): Developed by [Google](https://www.google.com/) for optimizing TensorFlow Lite models on Edge TPUs, this model format ensures high-speed, efficient [edge computing](https://www.ultralytics.com/glossary/edge-computing).
- [TF.js](tfjs.md): Developed by [Google](https://www.google.com/) to facilitate machine learning in browsers and Node.js, TF.js allows JavaScript-based deployment of ML models. - [TensorRT](tensorrt.md): Developed by [NVIDIA](https://www.nvidia.com/), this high-performance [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) inference framework and model format optimizes AI models for accelerated speed and efficiency on NVIDIA GPUs, ensuring streamlined deployment.
- [PaddlePaddle](paddlepaddle.md): An open-source deep learning platform by [Baidu](https://www.baidu.com/), PaddlePaddle enables the efficient deployment of AI models and focuses on the scalability of industrial applications. - [TorchScript](torchscript.md): Developed as part of the [PyTorch](https://pytorch.org/) framework, TorchScript enables efficient execution and deployment of machine learning models in various production environments without the need for Python dependencies.
- [NCNN](ncnn.md): Developed by [Tencent](http://www.tencent.com/), NCNN is an efficient [neural network](https://www.ultralytics.com/glossary/neural-network-nn) inference framework tailored for mobile devices. It enables direct deployment of AI models into apps, optimizing performance across various mobile platforms.
- [VS Code](vscode.md): An extension for VS Code that provides code snippets for accelerating development workflows with Ultralytics and also for anyone looking for examples to help learn or get started with Ultralytics. - [VS Code](vscode.md): An extension for VS Code that provides code snippets for accelerating development workflows with Ultralytics and also for anyone looking for examples to help learn or get started with Ultralytics.

View file

@ -392,35 +392,35 @@ nav:
- Clearml Logging: yolov5/tutorials/clearml_logging_integration.md - Clearml Logging: yolov5/tutorials/clearml_logging_integration.md
- Integrations: - Integrations:
- integrations/index.md - integrations/index.md
- TorchScript: integrations/torchscript.md - Amazon SageMaker: integrations/amazon-sagemaker.md
- ClearML: integrations/clearml.md
- Comet ML: integrations/comet.md
- CoreML: integrations/coreml.md
- DVC: integrations/dvc.md
- Google Colab: integrations/google-colab.md
- Gradio: integrations/gradio.md
- IBM Watsonx: integrations/ibm-watsonx.md
- JupyterLab: integrations/jupyterlab.md
- Kaggle: integrations/kaggle.md
- MLflow: integrations/mlflow.md
- NCNN: integrations/ncnn.md
- Neural Magic: integrations/neural-magic.md
- ONNX: integrations/onnx.md - ONNX: integrations/onnx.md
- OpenVINO: integrations/openvino.md - OpenVINO: integrations/openvino.md
- TensorRT: integrations/tensorrt.md
- CoreML: integrations/coreml.md
- TF SavedModel: integrations/tf-savedmodel.md
- TF GraphDef: integrations/tf-graphdef.md
- TFLite: integrations/tflite.md
- TFLite Edge TPU: integrations/edge-tpu.md
- TF.js: integrations/tfjs.md
- PaddlePaddle: integrations/paddlepaddle.md - PaddlePaddle: integrations/paddlepaddle.md
- NCNN: integrations/ncnn.md - Paperspace Gradient: integrations/paperspace.md
- Comet ML: integrations/comet.md
- Ray Tune: integrations/ray-tune.md - Ray Tune: integrations/ray-tune.md
- Roboflow: integrations/roboflow.md - Roboflow: integrations/roboflow.md
- MLflow: integrations/mlflow.md - TF GraphDef: integrations/tf-graphdef.md
- ClearML: integrations/clearml.md - TF SavedModel: integrations/tf-savedmodel.md
- DVC: integrations/dvc.md - TF.js: integrations/tfjs.md
- Weights & Biases: integrations/weights-biases.md - TFLite: integrations/tflite.md
- Neural Magic: integrations/neural-magic.md - TFLite Edge TPU: integrations/edge-tpu.md
- Gradio: integrations/gradio.md
- TensorBoard: integrations/tensorboard.md - TensorBoard: integrations/tensorboard.md
- Amazon SageMaker: integrations/amazon-sagemaker.md - TensorRT: integrations/tensorrt.md
- Paperspace Gradient: integrations/paperspace.md - TorchScript: integrations/torchscript.md
- Google Colab: integrations/google-colab.md
- Kaggle: integrations/kaggle.md
- JupyterLab: integrations/jupyterlab.md
- IBM Watsonx: integrations/ibm-watsonx.md
- VS Code: integrations/vscode.md - VS Code: integrations/vscode.md
- Weights & Biases: integrations/weights-biases.md
- HUB: - HUB:
- hub/index.md - hub/index.md
- Web: - Web: