Revert ultralytics-thop to optional (#13290)
This commit is contained in:
parent
7453753544
commit
3f2954fbf8
3 changed files with 16 additions and 5 deletions
|
|
@ -77,7 +77,7 @@ dependencies = [
|
||||||
"py-cpuinfo", # display CPU info
|
"py-cpuinfo", # display CPU info
|
||||||
"pandas>=1.1.4",
|
"pandas>=1.1.4",
|
||||||
"seaborn>=0.11.0", # plotting
|
"seaborn>=0.11.0", # plotting
|
||||||
"ultralytics-thop>=0.2.4", # FLOPs computation https://github.com/ultralytics/thop
|
"ultralytics-thop>=0.2.5", # FLOPs computation https://github.com/ultralytics/thop
|
||||||
]
|
]
|
||||||
|
|
||||||
# Optional dependencies ------------------------------------------------------------------------------------------------
|
# Optional dependencies ------------------------------------------------------------------------------------------------
|
||||||
|
|
|
||||||
|
|
@ -4,7 +4,6 @@ import contextlib
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import thop
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
@ -66,6 +65,11 @@ from ultralytics.utils.torch_utils import (
|
||||||
time_sync,
|
time_sync,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
import thop
|
||||||
|
except ImportError:
|
||||||
|
thop = None
|
||||||
|
|
||||||
|
|
||||||
class BaseModel(nn.Module):
|
class BaseModel(nn.Module):
|
||||||
"""The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""
|
"""The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""
|
||||||
|
|
@ -153,7 +157,7 @@ class BaseModel(nn.Module):
|
||||||
None
|
None
|
||||||
"""
|
"""
|
||||||
c = m == self.model[-1] and isinstance(x, list) # is final layer list, copy input as inplace fix
|
c = m == self.model[-1] and isinstance(x, list) # is final layer list, copy input as inplace fix
|
||||||
flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1e9 * 2 # GFLOPs
|
flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1e9 * 2 if thop else 0 # GFLOPs
|
||||||
t = time_sync()
|
t = time_sync()
|
||||||
for _ in range(10):
|
for _ in range(10):
|
||||||
m(x.copy() if c else x)
|
m(x.copy() if c else x)
|
||||||
|
|
|
||||||
|
|
@ -11,7 +11,6 @@ from pathlib import Path
|
||||||
from typing import Union
|
from typing import Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import thop
|
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
@ -28,6 +27,11 @@ from ultralytics.utils import (
|
||||||
)
|
)
|
||||||
from ultralytics.utils.checks import check_version
|
from ultralytics.utils.checks import check_version
|
||||||
|
|
||||||
|
try:
|
||||||
|
import thop
|
||||||
|
except ImportError:
|
||||||
|
thop = None
|
||||||
|
|
||||||
# Version checks (all default to version>=min_version)
|
# Version checks (all default to version>=min_version)
|
||||||
TORCH_1_9 = check_version(torch.__version__, "1.9.0")
|
TORCH_1_9 = check_version(torch.__version__, "1.9.0")
|
||||||
TORCH_1_13 = check_version(torch.__version__, "1.13.0")
|
TORCH_1_13 = check_version(torch.__version__, "1.13.0")
|
||||||
|
|
@ -304,6 +308,9 @@ def model_info_for_loggers(trainer):
|
||||||
|
|
||||||
def get_flops(model, imgsz=640):
|
def get_flops(model, imgsz=640):
|
||||||
"""Return a YOLO model's FLOPs."""
|
"""Return a YOLO model's FLOPs."""
|
||||||
|
if not thop:
|
||||||
|
return 0.0 # if not installed return 0.0 GFLOPs
|
||||||
|
|
||||||
try:
|
try:
|
||||||
model = de_parallel(model)
|
model = de_parallel(model)
|
||||||
p = next(model.parameters())
|
p = next(model.parameters())
|
||||||
|
|
@ -564,7 +571,7 @@ def profile(input, ops, n=10, device=None):
|
||||||
m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
||||||
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
|
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
|
||||||
try:
|
try:
|
||||||
flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1e9 * 2 # GFLOPs
|
flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1e9 * 2 if thop else 0 # GFLOPs
|
||||||
except Exception:
|
except Exception:
|
||||||
flops = 0
|
flops = 0
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue