Optimized SAHI video inference (#15183)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
d96ea5b493
commit
3e4a581c35
1 changed files with 78 additions and 87 deletions
|
|
@ -9,103 +9,94 @@ from sahi.predict import get_sliced_prediction
|
||||||
from sahi.utils.yolov8 import download_yolov8s_model
|
from sahi.utils.yolov8 import download_yolov8s_model
|
||||||
|
|
||||||
from ultralytics.utils.files import increment_path
|
from ultralytics.utils.files import increment_path
|
||||||
|
from ultralytics.utils.plotting import Annotator, colors
|
||||||
|
|
||||||
|
|
||||||
def run(weights="yolov8n.pt", source="test.mp4", view_img=False, save_img=False, exist_ok=False):
|
class SahiInference:
|
||||||
"""
|
def __init__(self):
|
||||||
Run object detection on a video using YOLOv8 and SAHI.
|
self.detection_model = None
|
||||||
|
|
||||||
Args:
|
def load_model(self, weights):
|
||||||
weights (str): Model weights path.
|
yolov8_model_path = f"models/{weights}"
|
||||||
source (str): Video file path.
|
download_yolov8s_model(yolov8_model_path)
|
||||||
view_img (bool): Show results.
|
self.detection_model = AutoDetectionModel.from_pretrained(
|
||||||
save_img (bool): Save results.
|
model_type="yolov8", model_path=yolov8_model_path, confidence_threshold=0.3, device="cpu"
|
||||||
exist_ok (bool): Overwrite existing files.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Check source path
|
|
||||||
if not Path(source).exists():
|
|
||||||
raise FileNotFoundError(f"Source path '{source}' does not exist.")
|
|
||||||
|
|
||||||
yolov8_model_path = f"models/{weights}"
|
|
||||||
download_yolov8s_model(yolov8_model_path)
|
|
||||||
detection_model = AutoDetectionModel.from_pretrained(
|
|
||||||
model_type="yolov8", model_path=yolov8_model_path, confidence_threshold=0.3, device="cpu"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Video setup
|
|
||||||
videocapture = cv2.VideoCapture(source)
|
|
||||||
frame_width, frame_height = int(videocapture.get(3)), int(videocapture.get(4))
|
|
||||||
fps, fourcc = int(videocapture.get(5)), cv2.VideoWriter_fourcc(*"mp4v")
|
|
||||||
|
|
||||||
# Output setup
|
|
||||||
save_dir = increment_path(Path("ultralytics_results_with_sahi") / "exp", exist_ok)
|
|
||||||
save_dir.mkdir(parents=True, exist_ok=True)
|
|
||||||
video_writer = cv2.VideoWriter(str(save_dir / f"{Path(source).stem}.mp4"), fourcc, fps, (frame_width, frame_height))
|
|
||||||
|
|
||||||
while videocapture.isOpened():
|
|
||||||
success, frame = videocapture.read()
|
|
||||||
if not success:
|
|
||||||
break
|
|
||||||
|
|
||||||
results = get_sliced_prediction(
|
|
||||||
frame, detection_model, slice_height=512, slice_width=512, overlap_height_ratio=0.2, overlap_width_ratio=0.2
|
|
||||||
)
|
)
|
||||||
object_prediction_list = results.object_prediction_list
|
|
||||||
|
|
||||||
boxes_list = []
|
def inference(
|
||||||
clss_list = []
|
self, weights="yolov8n.pt", source="test.mp4", view_img=False, save_img=False, exist_ok=False, track=False
|
||||||
for ind, _ in enumerate(object_prediction_list):
|
):
|
||||||
boxes = (
|
"""
|
||||||
object_prediction_list[ind].bbox.minx,
|
Run object detection on a video using YOLOv8 and SAHI.
|
||||||
object_prediction_list[ind].bbox.miny,
|
|
||||||
object_prediction_list[ind].bbox.maxx,
|
Args:
|
||||||
object_prediction_list[ind].bbox.maxy,
|
weights (str): Model weights path.
|
||||||
|
source (str): Video file path.
|
||||||
|
view_img (bool): Show results.
|
||||||
|
save_img (bool): Save results.
|
||||||
|
exist_ok (bool): Overwrite existing files.
|
||||||
|
track (bool): Enable object tracking with SAHI
|
||||||
|
"""
|
||||||
|
# Video setup
|
||||||
|
cap = cv2.VideoCapture(source)
|
||||||
|
assert cap.isOpened(), "Error reading video file"
|
||||||
|
frame_width, frame_height = int(cap.get(3)), int(cap.get(4))
|
||||||
|
|
||||||
|
# Output setup
|
||||||
|
save_dir = increment_path(Path("ultralytics_results_with_sahi") / "exp", exist_ok)
|
||||||
|
save_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
video_writer = cv2.VideoWriter(
|
||||||
|
str(save_dir / f"{Path(source).stem}.mp4"),
|
||||||
|
cv2.VideoWriter_fourcc(*"mp4v"),
|
||||||
|
int(cap.get(5)),
|
||||||
|
(frame_width, frame_height),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
self.load_model(weights)
|
||||||
|
while cap.isOpened():
|
||||||
|
success, frame = cap.read()
|
||||||
|
if not success:
|
||||||
|
break
|
||||||
|
annotator = Annotator(frame) # Initialize annotator for plotting detection and tracking results
|
||||||
|
results = get_sliced_prediction(
|
||||||
|
frame,
|
||||||
|
self.detection_model,
|
||||||
|
slice_height=512,
|
||||||
|
slice_width=512,
|
||||||
|
overlap_height_ratio=0.2,
|
||||||
|
overlap_width_ratio=0.2,
|
||||||
)
|
)
|
||||||
clss = object_prediction_list[ind].category.name
|
detection_data = [
|
||||||
boxes_list.append(boxes)
|
(det.category.name, det.category.id, (det.bbox.minx, det.bbox.miny, det.bbox.maxx, det.bbox.maxy))
|
||||||
clss_list.append(clss)
|
for det in results.object_prediction_list
|
||||||
|
]
|
||||||
|
|
||||||
for box, cls in zip(boxes_list, clss_list):
|
for det in detection_data:
|
||||||
x1, y1, x2, y2 = box
|
annotator.box_label(det[2], label=str(det[0]), color=colors(int(det[1]), True))
|
||||||
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (56, 56, 255), 2)
|
|
||||||
label = str(cls)
|
|
||||||
t_size = cv2.getTextSize(label, 0, fontScale=0.6, thickness=1)[0]
|
|
||||||
cv2.rectangle(
|
|
||||||
frame, (int(x1), int(y1) - t_size[1] - 3), (int(x1) + t_size[0], int(y1) + 3), (56, 56, 255), -1
|
|
||||||
)
|
|
||||||
cv2.putText(
|
|
||||||
frame, label, (int(x1), int(y1) - 2), 0, 0.6, [255, 255, 255], thickness=1, lineType=cv2.LINE_AA
|
|
||||||
)
|
|
||||||
|
|
||||||
if view_img:
|
if view_img:
|
||||||
cv2.imshow(Path(source).stem, frame)
|
cv2.imshow(Path(source).stem, frame)
|
||||||
if save_img:
|
if save_img:
|
||||||
video_writer.write(frame)
|
video_writer.write(frame)
|
||||||
|
|
||||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||||
break
|
break
|
||||||
video_writer.release()
|
video_writer.release()
|
||||||
videocapture.release()
|
cap.release()
|
||||||
cv2.destroyAllWindows()
|
cv2.destroyAllWindows()
|
||||||
|
|
||||||
|
def parse_opt(self):
|
||||||
def parse_opt():
|
"""Parse command line arguments."""
|
||||||
"""Parse command line arguments."""
|
parser = argparse.ArgumentParser()
|
||||||
parser = argparse.ArgumentParser()
|
parser.add_argument("--weights", type=str, default="yolov8n.pt", help="initial weights path")
|
||||||
parser.add_argument("--weights", type=str, default="yolov8n.pt", help="initial weights path")
|
parser.add_argument("--source", type=str, required=True, help="video file path")
|
||||||
parser.add_argument("--source", type=str, required=True, help="video file path")
|
parser.add_argument("--view-img", action="store_true", help="show results")
|
||||||
parser.add_argument("--view-img", action="store_true", help="show results")
|
parser.add_argument("--save-img", action="store_true", help="save results")
|
||||||
parser.add_argument("--save-img", action="store_true", help="save results")
|
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
||||||
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
|
return parser.parse_args()
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def main(opt):
|
|
||||||
"""Main function."""
|
|
||||||
run(**vars(opt))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
opt = parse_opt()
|
inference = SahiInference()
|
||||||
main(opt)
|
inference.inference(**vars(inference.parse_opt()))
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue