ultralytics 8.3.77 faster YOLOv8-Segment ONNX Runtime example (#19312)
Signed-off-by: Adnan Ekici <53556022+AdnanEkici@users.noreply.github.com> Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
b50a327a04
commit
3bb51b608f
2 changed files with 187 additions and 264 deletions
|
|
@ -1,25 +1,39 @@
|
|||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
import argparse
|
||||
from typing import List, Tuple, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import ultralytics.utils.ops as ops
|
||||
from ultralytics.engine.results import Results
|
||||
from ultralytics.utils import ASSETS, yaml_load
|
||||
from ultralytics.utils.checks import check_yaml
|
||||
from ultralytics.utils.plotting import Colors
|
||||
|
||||
|
||||
class YOLOv8Seg:
|
||||
"""YOLOv8 segmentation model."""
|
||||
|
||||
def __init__(self, onnx_model):
|
||||
def __init__(self, onnx_model, conf_threshold=0.4):
|
||||
"""
|
||||
Initialization.
|
||||
Initializes the object detection model using an ONNX model.
|
||||
|
||||
Args:
|
||||
onnx_model (str): Path to the ONNX model.
|
||||
onnx_model (str): Path to the ONNX model file.
|
||||
conf_threshold (float, optional): Confidence threshold for detections. Defaults to 0.4.
|
||||
|
||||
Attributes:
|
||||
session (ort.InferenceSession): ONNX Runtime session for running inference.
|
||||
ndtype (numpy.dtype): Data type for model input (FP16 or FP32).
|
||||
model_height (int): Height of the model's input image.
|
||||
model_width (int): Width of the model's input image.
|
||||
classes (list): List of class names from the COCO dataset.
|
||||
device (str): Specifies whether inference runs on CPU or GPU.
|
||||
conf_threshold (float): Confidence threshold for filtering detections.
|
||||
"""
|
||||
# Build Ort session
|
||||
self.session = ort.InferenceSession(
|
||||
|
|
@ -38,281 +52,190 @@ class YOLOv8Seg:
|
|||
# Load COCO class names
|
||||
self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
|
||||
|
||||
# Create color palette
|
||||
self.color_palette = Colors()
|
||||
# Device
|
||||
self.device = "cuda:0" if ort.get_device().lower() == "gpu" else "cpu"
|
||||
|
||||
def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45, nm=32):
|
||||
# Confidence
|
||||
self.conf_threshold = conf_threshold
|
||||
|
||||
def __call__(self, im0):
|
||||
"""
|
||||
The whole pipeline: pre-process -> inference -> post-process.
|
||||
Runs inference on the input image using the ONNX model.
|
||||
|
||||
Args:
|
||||
im0 (Numpy.ndarray): original input image.
|
||||
conf_threshold (float): confidence threshold for filtering predictions.
|
||||
iou_threshold (float): iou threshold for NMS.
|
||||
nm (int): the number of masks.
|
||||
im0 (numpy.ndarray): The original input image in BGR format.
|
||||
|
||||
Returns:
|
||||
boxes (List): list of bounding boxes.
|
||||
segments (List): list of segments.
|
||||
masks (np.ndarray): [N, H, W], output masks.
|
||||
list: Processed detection results after post-processing.
|
||||
|
||||
Example:
|
||||
>>> detector = Model("yolov8.onnx")
|
||||
>>> results = detector(image) # Runs inference and returns detections.
|
||||
"""
|
||||
# Pre-process
|
||||
im, ratio, (pad_w, pad_h) = self.preprocess(im0)
|
||||
processed_image = self.preprocess(im0)
|
||||
|
||||
# Ort inference
|
||||
preds = self.session.run(None, {self.session.get_inputs()[0].name: im})
|
||||
predictions = self.session.run(None, {self.session.get_inputs()[0].name: processed_image})
|
||||
|
||||
# Post-process
|
||||
boxes, segments, masks = self.postprocess(
|
||||
preds,
|
||||
im0=im0,
|
||||
ratio=ratio,
|
||||
pad_w=pad_w,
|
||||
pad_h=pad_h,
|
||||
conf_threshold=conf_threshold,
|
||||
iou_threshold=iou_threshold,
|
||||
nm=nm,
|
||||
results = self.postprocess(im0, processed_image, predictions)
|
||||
|
||||
return results
|
||||
|
||||
def preprocess(self, image, new_shape: Union[Tuple, List] = (640, 640)):
|
||||
"""
|
||||
Preprocesses the input image before feeding it into the model.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): The input image in BGR format.
|
||||
new_shape (Tuple or List, optional): The target shape for resizing. Defaults to (640, 640).
|
||||
|
||||
Returns:
|
||||
np.ndarray: Preprocessed image ready for model inference.
|
||||
|
||||
Example:
|
||||
>>> processed_img = model.preprocess(image)
|
||||
"""
|
||||
image, _, _ = self.__resize_and_pad_image(image=image, new_shape=new_shape)
|
||||
image = self.__reshape_image(image=image)
|
||||
processed_image = image[None] if len(image.shape) == 3 else image
|
||||
return processed_image
|
||||
|
||||
def __reshape_image(self, image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Reshapes the image by changing its layout and normalizing pixel values.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): The image to be reshaped.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Reshaped and normalized image.
|
||||
|
||||
Example:
|
||||
>>> reshaped_img = model.__reshape_image(image)
|
||||
"""
|
||||
image = image.transpose([2, 0, 1])
|
||||
image = image[np.newaxis, ...]
|
||||
image = np.ascontiguousarray(image).astype(np.float32) / 255
|
||||
return image
|
||||
|
||||
def __resize_and_pad_image(
|
||||
self, image=np.ndarray, new_shape: Union[Tuple, List] = (640, 640), color: Union[Tuple, List] = (114, 114, 114)
|
||||
):
|
||||
"""
|
||||
Resizes and pads the input image while maintaining the aspect ratio.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): The input image.
|
||||
new_shape (Tuple or List, optional): Target shape (width, height). Defaults to (640, 640).
|
||||
color (Tuple or List, optional): Padding color. Defaults to (114, 114, 114).
|
||||
|
||||
Returns:
|
||||
Tuple[np.ndarray, float, float]: The resized image along with padding values.
|
||||
|
||||
Example:
|
||||
>>> resized_img, dw, dh = model.__resize_and_pad_image(image)
|
||||
"""
|
||||
shape = image.shape[:2] # original image shape
|
||||
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
ratio = min(new_shape[0] / shape[1], new_shape[1] / shape[0])
|
||||
|
||||
new_unpad = int(round(shape[1] * ratio)), int(round(shape[0] * ratio))
|
||||
delta_width, delta_height = new_shape[0] - new_unpad[0], new_shape[1] - new_unpad[1]
|
||||
|
||||
# Divide padding into 2 sides
|
||||
delta_width /= 2
|
||||
delta_height /= 2
|
||||
|
||||
image = cv2.resize(image, new_unpad, interpolation=cv2.INTER_LINEAR) if shape[::-1] == new_unpad else image
|
||||
|
||||
top, bottom = int(round(delta_height - 0.1)), int(round(delta_height + 0.1))
|
||||
left, right = int(round(delta_width - 0.1)), int(round(delta_width + 0.1))
|
||||
image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
|
||||
return image, delta_width, delta_height
|
||||
|
||||
def postprocess(self, image, processed_image, predictions):
|
||||
"""
|
||||
Post-processes model predictions to extract meaningful results.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): The original input image.
|
||||
processed_image (np.ndarray): The preprocessed image used for inference.
|
||||
predictions (list): Model output predictions.
|
||||
|
||||
Returns:
|
||||
list: Processed detection results.
|
||||
|
||||
Example:
|
||||
>>> results = model.postprocess(image, processed_image, predictions)
|
||||
"""
|
||||
torch_tensor_predictions = [torch.from_numpy(output) for output in predictions]
|
||||
torch_tensor_boxes_confidence_category_predictions = torch_tensor_predictions[0]
|
||||
masks_predictions_tensor = torch_tensor_predictions[1].to(self.device)
|
||||
|
||||
nms_boxes_confidence_category_predictions_tensor = ops.non_max_suppression(
|
||||
torch_tensor_boxes_confidence_category_predictions,
|
||||
conf_thres=self.conf_threshold,
|
||||
nc=len(self.classes),
|
||||
agnostic=False,
|
||||
max_det=100,
|
||||
max_time_img=0.001,
|
||||
max_nms=1000,
|
||||
)
|
||||
return boxes, segments, masks
|
||||
|
||||
def preprocess(self, img):
|
||||
results = []
|
||||
for idx, predictions in enumerate(nms_boxes_confidence_category_predictions_tensor):
|
||||
predictions = predictions.to(self.device)
|
||||
masks = self.__process_mask(
|
||||
masks_predictions_tensor[idx],
|
||||
predictions[:, 6:],
|
||||
predictions[:, :4],
|
||||
processed_image.shape[2:],
|
||||
upsample=True,
|
||||
) # HWC
|
||||
predictions[:, :4] = ops.scale_boxes(processed_image.shape[2:], predictions[:, :4], image.shape)
|
||||
results.append(Results(image, path="", names=self.classes, boxes=predictions[:, :6], masks=masks))
|
||||
|
||||
return results
|
||||
|
||||
def __process_mask(self, protos, masks_in, bboxes, shape, upsample=False):
|
||||
"""
|
||||
Pre-processes the input image.
|
||||
Processes segmentation masks from the model output.
|
||||
|
||||
Args:
|
||||
img (Numpy.ndarray): image about to be processed.
|
||||
protos (torch.Tensor): The prototype mask predictions from the model.
|
||||
masks_in (torch.Tensor): The raw mask predictions.
|
||||
bboxes (torch.Tensor): Bounding boxes for the detected objects.
|
||||
shape (Tuple): Target shape for mask resizing.
|
||||
upsample (bool, optional): Whether to upscale masks to match the original image size. Defaults to False.
|
||||
|
||||
Returns:
|
||||
img_process (Numpy.ndarray): image preprocessed for inference.
|
||||
ratio (tuple): width, height ratios in letterbox.
|
||||
pad_w (float): width padding in letterbox.
|
||||
pad_h (float): height padding in letterbox.
|
||||
torch.Tensor: Processed binary masks.
|
||||
|
||||
Example:
|
||||
>>> masks = model.__process_mask(protos, masks_in, bboxes, shape, upsample=True)
|
||||
"""
|
||||
# Resize and pad input image using letterbox() (Borrowed from Ultralytics)
|
||||
shape = img.shape[:2] # original image shape
|
||||
new_shape = (self.model_height, self.model_width)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
ratio = r, r
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2 # wh padding
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
|
||||
left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
|
||||
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
|
||||
c, mh, mw = protos.shape # CHW
|
||||
ih, iw = shape
|
||||
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
|
||||
width_ratio = mw / iw
|
||||
height_ratio = mh / ih
|
||||
|
||||
# Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
|
||||
img = np.ascontiguousarray(np.einsum("HWC->CHW", img)[::-1], dtype=self.ndtype) / 255.0
|
||||
img_process = img[None] if len(img.shape) == 3 else img
|
||||
return img_process, ratio, (pad_w, pad_h)
|
||||
downsampled_bboxes = bboxes.clone()
|
||||
downsampled_bboxes[:, 0] *= width_ratio
|
||||
downsampled_bboxes[:, 2] *= width_ratio
|
||||
downsampled_bboxes[:, 3] *= height_ratio
|
||||
downsampled_bboxes[:, 1] *= height_ratio
|
||||
|
||||
def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold, nm=32):
|
||||
"""
|
||||
Post-process the prediction.
|
||||
|
||||
Args:
|
||||
preds (Numpy.ndarray): predictions come from ort.session.run().
|
||||
im0 (Numpy.ndarray): [h, w, c] original input image.
|
||||
ratio (tuple): width, height ratios in letterbox.
|
||||
pad_w (float): width padding in letterbox.
|
||||
pad_h (float): height padding in letterbox.
|
||||
conf_threshold (float): conf threshold.
|
||||
iou_threshold (float): iou threshold.
|
||||
nm (int): the number of masks.
|
||||
|
||||
Returns:
|
||||
boxes (List): list of bounding boxes.
|
||||
segments (List): list of segments.
|
||||
masks (np.ndarray): [N, H, W], output masks.
|
||||
"""
|
||||
x, protos = preds[0], preds[1] # Two outputs: predictions and protos
|
||||
|
||||
# Transpose dim 1: (Batch_size, xywh_conf_cls_nm, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls_nm)
|
||||
x = np.einsum("bcn->bnc", x)
|
||||
|
||||
# Predictions filtering by conf-threshold
|
||||
x = x[np.amax(x[..., 4:-nm], axis=-1) > conf_threshold]
|
||||
|
||||
# Create a new matrix which merge these(box, score, cls, nm) into one
|
||||
# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
|
||||
x = np.c_[x[..., :4], np.amax(x[..., 4:-nm], axis=-1), np.argmax(x[..., 4:-nm], axis=-1), x[..., -nm:]]
|
||||
|
||||
# NMS filtering
|
||||
x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
|
||||
|
||||
# Decode and return
|
||||
if len(x) > 0:
|
||||
# Bounding boxes format change: cxcywh -> xyxy
|
||||
x[..., [0, 1]] -= x[..., [2, 3]] / 2
|
||||
x[..., [2, 3]] += x[..., [0, 1]]
|
||||
|
||||
# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
|
||||
x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
|
||||
x[..., :4] /= min(ratio)
|
||||
|
||||
# Bounding boxes boundary clamp
|
||||
x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
|
||||
x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])
|
||||
|
||||
# Process masks
|
||||
masks = self.process_mask(protos[0], x[:, 6:], x[:, :4], im0.shape)
|
||||
|
||||
# Masks -> Segments(contours)
|
||||
segments = self.masks2segments(masks)
|
||||
return x[..., :6], segments, masks # boxes, segments, masks
|
||||
else:
|
||||
return [], [], []
|
||||
|
||||
@staticmethod
|
||||
def masks2segments(masks):
|
||||
"""
|
||||
Takes a list of masks(n,h,w) and returns a list of segments(n,xy), from
|
||||
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
|
||||
|
||||
Args:
|
||||
masks (numpy.ndarray): the output of the model, which is a tensor of shape (batch_size, 160, 160).
|
||||
|
||||
Returns:
|
||||
segments (List): list of segment masks.
|
||||
"""
|
||||
segments = []
|
||||
for x in masks.astype("uint8"):
|
||||
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0] # CHAIN_APPROX_SIMPLE
|
||||
if c:
|
||||
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
|
||||
else:
|
||||
c = np.zeros((0, 2)) # no segments found
|
||||
segments.append(c.astype("float32"))
|
||||
return segments
|
||||
|
||||
@staticmethod
|
||||
def crop_mask(masks, boxes):
|
||||
"""
|
||||
Takes a mask and a bounding box, and returns a mask that is cropped to the bounding box, from
|
||||
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
|
||||
|
||||
Args:
|
||||
masks (Numpy.ndarray): [n, h, w] tensor of masks.
|
||||
boxes (Numpy.ndarray): [n, 4] tensor of bbox coordinates in relative point form.
|
||||
|
||||
Returns:
|
||||
(Numpy.ndarray): The masks are being cropped to the bounding box.
|
||||
"""
|
||||
n, h, w = masks.shape
|
||||
x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1)
|
||||
r = np.arange(w, dtype=x1.dtype)[None, None, :]
|
||||
c = np.arange(h, dtype=x1.dtype)[None, :, None]
|
||||
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
|
||||
|
||||
def process_mask(self, protos, masks_in, bboxes, im0_shape):
|
||||
"""
|
||||
Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher
|
||||
quality but is slower, from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
|
||||
|
||||
Args:
|
||||
protos (numpy.ndarray): [mask_dim, mask_h, mask_w].
|
||||
masks_in (numpy.ndarray): [n, mask_dim], n is number of masks after nms.
|
||||
bboxes (numpy.ndarray): bboxes re-scaled to original image shape.
|
||||
im0_shape (tuple): the size of the input image (h,w,c).
|
||||
|
||||
Returns:
|
||||
(numpy.ndarray): The upsampled masks.
|
||||
"""
|
||||
c, mh, mw = protos.shape
|
||||
masks = np.matmul(masks_in, protos.reshape((c, -1))).reshape((-1, mh, mw)).transpose(1, 2, 0) # HWN
|
||||
masks = np.ascontiguousarray(masks)
|
||||
masks = self.scale_mask(masks, im0_shape) # re-scale mask from P3 shape to original input image shape
|
||||
masks = np.einsum("HWN -> NHW", masks) # HWN -> NHW
|
||||
masks = self.crop_mask(masks, bboxes)
|
||||
return np.greater(masks, 0.5)
|
||||
|
||||
@staticmethod
|
||||
def scale_mask(masks, im0_shape, ratio_pad=None):
|
||||
"""
|
||||
Takes a mask, and resizes it to the original image size, from
|
||||
https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/ops.py.
|
||||
|
||||
Args:
|
||||
masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
|
||||
im0_shape (tuple): the original image shape.
|
||||
ratio_pad (tuple): the ratio of the padding to the original image.
|
||||
|
||||
Returns:
|
||||
masks (np.ndarray): The masks that are being returned.
|
||||
"""
|
||||
im1_shape = masks.shape[:2]
|
||||
if ratio_pad is None: # calculate from im0_shape
|
||||
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
|
||||
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
|
||||
else:
|
||||
pad = ratio_pad[1]
|
||||
|
||||
# Calculate tlbr of mask
|
||||
top, left = int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1)) # y, x
|
||||
bottom, right = int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1))
|
||||
if len(masks.shape) < 2:
|
||||
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
|
||||
masks = masks[top:bottom, left:right]
|
||||
masks = cv2.resize(
|
||||
masks, (im0_shape[1], im0_shape[0]), interpolation=cv2.INTER_LINEAR
|
||||
) # INTER_CUBIC would be better
|
||||
if len(masks.shape) == 2:
|
||||
masks = masks[:, :, None]
|
||||
return masks
|
||||
|
||||
def draw_and_visualize(self, im, bboxes, segments, vis=False, save=True):
|
||||
"""
|
||||
Draw and visualize results.
|
||||
|
||||
Args:
|
||||
im (np.ndarray): original image, shape [h, w, c].
|
||||
bboxes (numpy.ndarray): [n, 4], n is number of bboxes.
|
||||
segments (List): list of segment masks.
|
||||
vis (bool): imshow using OpenCV.
|
||||
save (bool): save image annotated.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
# Draw rectangles and polygons
|
||||
im_canvas = im.copy()
|
||||
for (*box, conf, cls_), segment in zip(bboxes, segments):
|
||||
# draw contour and fill mask
|
||||
cv2.polylines(im, np.int32([segment]), True, (255, 255, 255), 2) # white borderline
|
||||
cv2.fillPoly(im_canvas, np.int32([segment]), self.color_palette(int(cls_), bgr=True))
|
||||
|
||||
# draw bbox rectangle
|
||||
cv2.rectangle(
|
||||
im,
|
||||
(int(box[0]), int(box[1])),
|
||||
(int(box[2]), int(box[3])),
|
||||
self.color_palette(int(cls_), bgr=True),
|
||||
1,
|
||||
cv2.LINE_AA,
|
||||
)
|
||||
cv2.putText(
|
||||
im,
|
||||
f"{self.classes[cls_]}: {conf:.3f}",
|
||||
(int(box[0]), int(box[1] - 9)),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.7,
|
||||
self.color_palette(int(cls_), bgr=True),
|
||||
2,
|
||||
cv2.LINE_AA,
|
||||
)
|
||||
|
||||
# Mix image
|
||||
im = cv2.addWeighted(im_canvas, 0.3, im, 0.7, 0)
|
||||
|
||||
# Show image
|
||||
if vis:
|
||||
cv2.imshow("demo", im)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
# Save image
|
||||
if save:
|
||||
cv2.imwrite("demo.jpg", im)
|
||||
masks = ops.crop_mask(masks, downsampled_bboxes) # CHW
|
||||
if upsample:
|
||||
masks = F.interpolate(masks[None], shape, mode="bilinear", align_corners=False)[0] # CHW
|
||||
return masks.gt_(0.5).to(self.device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
@ -321,18 +244,18 @@ if __name__ == "__main__":
|
|||
parser.add_argument("--model", type=str, required=True, help="Path to ONNX model")
|
||||
parser.add_argument("--source", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image")
|
||||
parser.add_argument("--conf", type=float, default=0.25, help="Confidence threshold")
|
||||
parser.add_argument("--iou", type=float, default=0.45, help="NMS IoU threshold")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Build model
|
||||
model = YOLOv8Seg(args.model)
|
||||
model = YOLOv8Seg(args.model, args.conf)
|
||||
|
||||
# Read image by OpenCV
|
||||
img = cv2.imread(args.source)
|
||||
img = cv2.resize(img, (640, 640)) # Can be changed based on your models expected size
|
||||
|
||||
# Inference
|
||||
boxes, segments, _ = model(img, conf_threshold=args.conf, iou_threshold=args.iou)
|
||||
results = model(img)
|
||||
|
||||
# Draw bboxes and polygons
|
||||
if len(boxes) > 0:
|
||||
model.draw_and_visualize(img, boxes, segments, vis=False, save=True)
|
||||
cv2.imshow("Segmented Image", results[0].plot())
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
__version__ = "8.3.76"
|
||||
__version__ = "8.3.77"
|
||||
|
||||
import os
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue