Fixed OpenVINO Docs formatting (#14773)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
2ebd01faa8
commit
3b1517f589
8 changed files with 98 additions and 96 deletions
|
|
@ -100,22 +100,22 @@ To train a YOLO model on the CIFAR-10 dataset using Ultralytics, you can follow
|
|||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="cifar10", epochs=100, imgsz=32)
|
||||
```
|
||||
# Train the model
|
||||
results = model.train(data="cifar10", epochs=100, imgsz=32)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=cifar10 model=yolov8n-cls.pt epochs=100 imgsz=32
|
||||
```
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=cifar10 model=yolov8n-cls.pt epochs=100 imgsz=32
|
||||
```
|
||||
|
||||
For more details, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
|
|
|
|||
|
|
@ -126,22 +126,22 @@ To train a YOLO model on the ImageNette dataset for 100 epochs, you can use the
|
|||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="imagenette", epochs=100, imgsz=224)
|
||||
```
|
||||
# Train the model
|
||||
results = model.train(data="imagenette", epochs=100, imgsz=224)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
|
||||
```
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
|
||||
```
|
||||
|
||||
For more details, see the [Training](../../modes/train.md) documentation page.
|
||||
|
||||
|
|
|
|||
|
|
@ -39,18 +39,18 @@ To use Multi-Object Tracking with Ultralytics YOLO, you can start by using the P
|
|||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n.pt") # Load the YOLOv8 model
|
||||
results = model.track(source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True)
|
||||
```
|
||||
model = YOLO("yolov8n.pt") # Load the YOLOv8 model
|
||||
results = model.track(source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" conf=0.3 iou=0.5 show
|
||||
```
|
||||
```bash
|
||||
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" conf=0.3 iou=0.5 show
|
||||
```
|
||||
|
||||
These commands load the YOLOv8 model and use it for tracking objects in the given video source with specific confidence (`conf`) and Intersection over Union (`iou`) thresholds. For more details, refer to the [track mode documentation](../../modes/track.md).
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue