Fixed OpenVINO Docs formatting (#14773)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Francesco Mattioli 2024-07-29 23:57:14 +02:00 committed by GitHub
parent 2ebd01faa8
commit 3b1517f589
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 98 additions and 96 deletions

View file

@ -100,22 +100,22 @@ To train a YOLO model on the CIFAR-10 dataset using Ultralytics, you can follow
=== "Python"
```python
from ultralytics import YOLO
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
# Load a model
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="cifar10", epochs=100, imgsz=32)
```
# Train the model
results = model.train(data="cifar10", epochs=100, imgsz=32)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo detect train data=cifar10 model=yolov8n-cls.pt epochs=100 imgsz=32
```
```bash
# Start training from a pretrained *.pt model
yolo detect train data=cifar10 model=yolov8n-cls.pt epochs=100 imgsz=32
```
For more details, refer to the model [Training](../../modes/train.md) page.

View file

@ -126,22 +126,22 @@ To train a YOLO model on the ImageNette dataset for 100 epochs, you can use the
=== "Python"
```python
from ultralytics import YOLO
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
# Load a model
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="imagenette", epochs=100, imgsz=224)
```
# Train the model
results = model.train(data="imagenette", epochs=100, imgsz=224)
```
=== "CLI"
```bash
# Start training from a pretrained *.pt model
yolo detect train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
```
```bash
# Start training from a pretrained *.pt model
yolo detect train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
```
For more details, see the [Training](../../modes/train.md) documentation page.

View file

@ -39,18 +39,18 @@ To use Multi-Object Tracking with Ultralytics YOLO, you can start by using the P
=== "Python"
```python
from ultralytics import YOLO
```python
from ultralytics import YOLO
model = YOLO("yolov8n.pt") # Load the YOLOv8 model
results = model.track(source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True)
```
model = YOLO("yolov8n.pt") # Load the YOLOv8 model
results = model.track(source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True)
```
=== "CLI"
```bash
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" conf=0.3 iou=0.5 show
```
```bash
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" conf=0.3 iou=0.5 show
```
These commands load the YOLOv8 model and use it for tracking objects in the given video source with specific confidence (`conf`) and Intersection over Union (`iou`) thresholds. For more details, refer to the [track mode documentation](../../modes/track.md).