update segment training (#57)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
Laughing 2022-11-29 05:30:08 -06:00 committed by GitHub
parent d0b0fe2592
commit 3a241e4cea
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 460 additions and 144 deletions

View file

@ -9,30 +9,18 @@ from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
from ultralytics.yolo.utils.modeling.tasks import SegmentationModel
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy
from ultralytics.yolo.utils.plotting import plot_images_and_masks, plot_results_with_masks
from ultralytics.yolo.utils.torch_utils import de_parallel
# BaseTrainer python usage
class SegmentationTrainer(BaseTrainer):
def get_dataloader(self, dataset_path, batch_size, rank=0):
def get_dataloader(self, dataset_path, batch_size, mode="train", rank=0):
# TODO: manage splits differently
# calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
return build_dataloader(
img_path=dataset_path,
img_size=self.args.img_size,
batch_size=batch_size,
single_cls=self.args.single_cls,
cache=self.args.cache,
image_weights=self.args.image_weights,
stride=gs,
rect=self.args.rect,
rank=rank,
workers=self.args.workers,
shuffle=self.args.shuffle,
use_segments=True,
)[0]
return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, rank=rank, mode=mode)[0]
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
@ -58,7 +46,10 @@ class SegmentationTrainer(BaseTrainer):
self.model.names = self.data["names"]
def get_validator(self):
return v8.segment.SegmentationValidator(self.test_loader, self.device, logger=self.console)
return v8.segment.SegmentationValidator(self.test_loader,
save_dir=self.save_dir,
logger=self.console,
args=self.args)
def criterion(self, preds, batch):
head = de_parallel(self.model).model[-1]
@ -218,6 +209,8 @@ class SegmentationTrainer(BaseTrainer):
else:
mask_gti = masks[tidxs[i]][j]
lseg += single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
else:
lseg += (proto * 0).sum()
obji = BCEobj(pi[..., 4], tobj)
lobj += obji * balance[i] # obj loss
@ -234,15 +227,33 @@ class SegmentationTrainer(BaseTrainer):
loss = lbox + lobj + lcls + lseg
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
def label_loss_items(self, loss_items):
def label_loss_items(self, loss_items=None, prefix="train"):
# We should just use named tensors here in future
keys = ["lbox", "lseg", "lobj", "lcls"]
return dict(zip(keys, loss_items))
keys = [f"{prefix}/lbox", f"{prefix}/lseg", f"{prefix}/lobj", f"{prefix}/lcls"]
return dict(zip(keys, loss_items)) if loss_items is not None else keys
def progress_string(self):
return ('\n' + '%11s' * 7) % \
('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'obj_loss', 'cls_loss', 'Size')
def plot_training_samples(self, batch, ni):
images = batch["img"]
masks = batch["masks"]
cls = batch["cls"].squeeze(-1)
bboxes = batch["bboxes"]
paths = batch["im_file"]
batch_idx = batch["batch_idx"]
plot_images_and_masks(images,
batch_idx,
cls,
bboxes,
masks,
paths,
fname=self.save_dir / f"train_batch{ni}.jpg")
def plot_metrics(self):
plot_results_with_masks(file=self.csv) # save results.png
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def train(cfg):