update segment training (#57)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
Laughing 2022-11-29 05:30:08 -06:00 committed by GitHub
parent d0b0fe2592
commit 3a241e4cea
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 460 additions and 144 deletions

View file

@ -1,4 +1,5 @@
import logging
from pathlib import Path
import torch
from omegaconf import OmegaConf
@ -6,6 +7,7 @@ from tqdm import tqdm
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import TQDM_BAR_FORMAT
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device
@ -15,16 +17,17 @@ class BaseValidator:
Base validator class.
"""
def __init__(self, dataloader, pbar=None, logger=None, args=None):
def __init__(self, dataloader, save_dir=None, pbar=None, logger=None, args=None):
self.dataloader = dataloader
self.pbar = pbar
self.logger = logger or logging.getLogger()
self.args = args or OmegaConf.load(DEFAULT_CONFIG)
self.device = select_device(self.args.device, dataloader.batch_size)
self.save_dir = save_dir if save_dir is not None else \
increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
self.cuda = self.device.type != 'cpu'
self.batch_i = None
self.training = True
self.loss = None
def __call__(self, trainer=None, model=None):
"""
@ -35,20 +38,22 @@ class BaseValidator:
if self.training:
model = trainer.ema.ema or trainer.model
self.args.half &= self.device.type != 'cpu'
# NOTE: half() inference in evaluation will make training stuck,
# so I comment it out for now, I think we can reuse half mode after we add EMA.
model = model.half() if self.args.half else model.float()
loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
else: # TODO: handle this when detectMultiBackend is supported
assert model is not None, "Either trainer or model is needed for validation"
# model = DetectMultiBacked(model)
# TODO: implement init_model_attributes()
model.eval()
dt = Profile(), Profile(), Profile(), Profile()
self.loss = 0
n_batches = len(self.dataloader)
desc = self.get_desc()
bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
# NOTE: keeping this `not self.training` in tqdm will eliminate pbar after finishing segmantation evaluation during training,
# so I removed it, not sure if this will affect classification task cause I saw we use this arg in yolov5/classify/val.py.
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
self.init_metrics(de_parallel(model))
with torch.no_grad():
for batch_i, batch in enumerate(bar):
@ -59,20 +64,23 @@ class BaseValidator:
# inference
with dt[1]:
preds = model(batch["img"].float())
preds = model(batch["img"])
# TODO: remember to add native augmentation support when implementing model, like:
# preds, train_out = model(im, augment=augment)
# loss
with dt[2]:
if self.training:
self.loss += trainer.criterion(preds, batch)[0]
loss += trainer.criterion(preds, batch)[1]
# pre-process predictions
with dt[3]:
preds = self.postprocess(preds)
self.update_metrics(preds, batch)
if self.args.plots and batch_i < 3:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
stats = self.get_stats()
self.check_stats(stats)
@ -81,7 +89,7 @@ class BaseValidator:
# print speeds
if not self.training:
t = tuple(x.t / len(self.dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
t = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
# shape = (self.dataloader.batch_size, 3, imgsz, imgsz)
self.logger.info(
'Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image at shape ' % t)
@ -90,7 +98,8 @@ class BaseValidator:
model.float()
# TODO: implement save json
return stats
return stats | trainer.label_loss_items(loss.cpu() / len(self.dataloader), prefix="val") \
if self.training else stats
def preprocess(self, batch):
return batch
@ -105,7 +114,7 @@ class BaseValidator:
pass
def get_stats(self):
pass
return {}
def check_stats(self, stats):
pass
@ -115,3 +124,14 @@ class BaseValidator:
def get_desc(self):
pass
@property
def metric_keys(self):
return []
# TODO: may need to put these following functions into callback
def plot_val_samples(self, batch, ni):
pass
def plot_predictions(self, batch, preds, ni):
pass