Add line counting and circular heatmaps in Ultralytics Solutions (#7113)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
a5735724c5
commit
38eaf5e29f
5 changed files with 526 additions and 247 deletions
|
|
@ -34,9 +34,9 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
|  |  |
|
||||
| Conveyor Belt Packets Counting Using Ultralytics YOLOv8 | Fish Counting in Sea using Ultralytics YOLOv8 |
|
||||
|
||||
!!! Example "Object Counting Example"
|
||||
!!! Example "Object Counting using YOLOv8 Example"
|
||||
|
||||
=== "Object Counting"
|
||||
=== "Region"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import object_counter
|
||||
|
|
@ -46,75 +46,21 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
||||
counter = object_counter.ObjectCounter() # Init Object Counter
|
||||
# Define region points
|
||||
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||
|
||||
# Video writer
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
||||
cv2.VideoWriter_fourcc(*'mp4v'),
|
||||
int(cap.get(5)),
|
||||
(int(cap.get(3)), int(cap.get(4))))
|
||||
|
||||
# Init Object Counter
|
||||
counter = object_counter.ObjectCounter()
|
||||
counter.set_args(view_img=True,
|
||||
reg_pts=region_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
```
|
||||
|
||||
=== "Object Counting with Specific Classes"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import object_counter
|
||||
import cv2
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
||||
classes_to_count = [0, 2]
|
||||
counter = object_counter.ObjectCounter() # Init Object Counter
|
||||
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||
counter.set_args(view_img=True,
|
||||
reg_pts=region_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False,
|
||||
classes=classes_to_count)
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
```
|
||||
|
||||
=== "Object Counting with Save Output"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import object_counter
|
||||
import cv2
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
||||
video_writer = cv2.VideoWriter("object_counting.avi",
|
||||
cv2.VideoWriter_fourcc(*'mp4v'),
|
||||
int(cap.get(5)),
|
||||
(int(cap.get(3)), int(cap.get(4))))
|
||||
|
||||
counter = object_counter.ObjectCounter() # Init Object Counter
|
||||
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||
counter.set_args(view_img=True,
|
||||
reg_pts=region_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True)
|
||||
reg_pts=region_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
|
|
@ -122,9 +68,95 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
video_writer.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
```
|
||||
|
||||
=== "Line"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import object_counter
|
||||
import cv2
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
||||
# Define line points
|
||||
line_points = [(20, 400), (1080, 400)]
|
||||
|
||||
# Video writer
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
||||
cv2.VideoWriter_fourcc(*'mp4v'),
|
||||
int(cap.get(5)),
|
||||
(int(cap.get(3)), int(cap.get(4))))
|
||||
|
||||
# Init Object Counter
|
||||
counter = object_counter.ObjectCounter()
|
||||
counter.set_args(view_img=True,
|
||||
reg_pts=line_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
video_writer.release()
|
||||
cv2.destroyAllWindows()
|
||||
```
|
||||
|
||||
=== "Specific Classes"
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import object_counter
|
||||
import cv2
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
||||
line_points = [(20, 400), (1080, 400)] # line or region points
|
||||
classes_to_count = [0, 2] # person and car classes for count
|
||||
|
||||
# Video writer
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
||||
cv2.VideoWriter_fourcc(*'mp4v'),
|
||||
int(cap.get(5)),
|
||||
(int(cap.get(3)), int(cap.get(4))))
|
||||
|
||||
# Init Object Counter
|
||||
counter = object_counter.ObjectCounter()
|
||||
counter.set_args(view_img=True,
|
||||
reg_pts=line_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False,
|
||||
classes=classes_to_count)
|
||||
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
video_writer.write(im0)
|
||||
|
||||
cap.release()
|
||||
video_writer.release()
|
||||
cv2.destroyAllWindows()
|
||||
```
|
||||
|
|
@ -135,15 +167,22 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
|
||||
### Optional Arguments `set_args`
|
||||
|
||||
| Name | Type | Default | Description |
|
||||
|-----------------|---------|--------------------------------------------------|---------------------------------------|
|
||||
| view_img | `bool` | `False` | Display the frame with counts |
|
||||
| line_thickness | `int` | `2` | Increase the thickness of count value |
|
||||
| reg_pts | `list` | `(20, 400), (1080, 404), (1080, 360), (20, 360)` | Region Area Points |
|
||||
| classes_names | `dict` | `model.model.names` | Classes Names Dict |
|
||||
| region_color | `tuple` | `(0, 255, 0)` | Region Area Color |
|
||||
| track_thickness | `int` | `2` | Tracking line thickness |
|
||||
| draw_tracks | `bool` | `False` | Draw Tracks lines |
|
||||
|
||||
| Name | Type | Default | Description |
|
||||
|---------------------|-------------|----------------------------|-----------------------------------------------|
|
||||
| view_img | `bool` | `False` | Display frames with counts |
|
||||
| line_thickness | `int` | `2` | Increase bounding boxes thickness |
|
||||
| reg_pts | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area |
|
||||
| classes_names | `dict` | `model.model.names` | Dictionary of Class Names |
|
||||
| region_color | `RGB Color` | `(255, 0, 255)` | Color of the Object counting Region or Line |
|
||||
| track_thickness | `int` | `2` | Thickness of Tracking Lines |
|
||||
| draw_tracks | `bool` | `False` | Enable drawing Track lines |
|
||||
| track_color | `RGB Color` | `(0, 255, 0)` | Color for each track line |
|
||||
| line_dist_thresh | `int` | `15` | Euclidean Distance threshold for line counter |
|
||||
| count_txt_thickness | `int` | `2` | Thickness of Object counts text |
|
||||
| count_txt_color | `RGB Color` | `(0, 0, 0)` | Foreground color for Object counts text |
|
||||
| count_color | `RGB Color` | `(255, 255, 255)` | Background color for Object counts text |
|
||||
| region_thickness | `int` | `5` | Thickness for object counter region or line |
|
||||
|
||||
### Arguments `model.track`
|
||||
|
||||
|
|
@ -155,3 +194,4 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
| `conf` | `float` | `0.3` | Confidence Threshold |
|
||||
| `iou` | `float` | `0.5` | IOU Threshold |
|
||||
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
|
||||
| `verbose` | `bool` | `True` | Display the object tracking results |
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue