Apply ruff==0.9.0 formatting (#18624)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
c196a82bfa
commit
34b339d033
12 changed files with 17 additions and 30 deletions
|
|
@ -1243,7 +1243,7 @@ class SettingsManager(JSONDict):
|
|||
"""Updates settings, validating keys and types."""
|
||||
for arg in args:
|
||||
if isinstance(arg, dict):
|
||||
kwargs.update(arg)
|
||||
kwargs |= arg
|
||||
for k, v in kwargs.items():
|
||||
if k not in self.defaults:
|
||||
raise KeyError(f"No Ultralytics setting '{k}'. {self.help_msg}")
|
||||
|
|
|
|||
|
|
@ -15,16 +15,14 @@ def on_pretrain_routine_start(trainer):
|
|||
|
||||
def on_pretrain_routine_end(trainer):
|
||||
"""Logs info before starting timer for upload rate limit."""
|
||||
session = getattr(trainer, "hub_session", None)
|
||||
if session:
|
||||
if session := getattr(trainer, "hub_session", None):
|
||||
# Start timer for upload rate limit
|
||||
session.timers = {"metrics": time(), "ckpt": time()} # start timer on session.rate_limit
|
||||
|
||||
|
||||
def on_fit_epoch_end(trainer):
|
||||
"""Uploads training progress metrics at the end of each epoch."""
|
||||
session = getattr(trainer, "hub_session", None)
|
||||
if session:
|
||||
if session := getattr(trainer, "hub_session", None):
|
||||
# Upload metrics after val end
|
||||
all_plots = {
|
||||
**trainer.label_loss_items(trainer.tloss, prefix="train"),
|
||||
|
|
@ -49,8 +47,7 @@ def on_fit_epoch_end(trainer):
|
|||
|
||||
def on_model_save(trainer):
|
||||
"""Saves checkpoints to Ultralytics HUB with rate limiting."""
|
||||
session = getattr(trainer, "hub_session", None)
|
||||
if session:
|
||||
if session := getattr(trainer, "hub_session", None):
|
||||
# Upload checkpoints with rate limiting
|
||||
is_best = trainer.best_fitness == trainer.fitness
|
||||
if time() - session.timers["ckpt"] > session.rate_limits["ckpt"]:
|
||||
|
|
@ -61,8 +58,7 @@ def on_model_save(trainer):
|
|||
|
||||
def on_train_end(trainer):
|
||||
"""Upload final model and metrics to Ultralytics HUB at the end of training."""
|
||||
session = getattr(trainer, "hub_session", None)
|
||||
if session:
|
||||
if session := getattr(trainer, "hub_session", None):
|
||||
# Upload final model and metrics with exponential standoff
|
||||
LOGGER.info(f"{PREFIX}Syncing final model...")
|
||||
session.upload_model(
|
||||
|
|
|
|||
|
|
@ -75,8 +75,7 @@ def parse_requirements(file_path=ROOT.parent / "requirements.txt", package=""):
|
|||
line = line.strip()
|
||||
if line and not line.startswith("#"):
|
||||
line = line.split("#")[0].strip() # ignore inline comments
|
||||
match = re.match(r"([a-zA-Z0-9-_]+)\s*([<>!=~]+.*)?", line)
|
||||
if match:
|
||||
if match := re.match(r"([a-zA-Z0-9-_]+)\s*([<>!=~]+.*)?", line):
|
||||
requirements.append(SimpleNamespace(name=match[1], specifier=match[2].strip() if match[2] else ""))
|
||||
|
||||
return requirements
|
||||
|
|
|
|||
|
|
@ -269,8 +269,7 @@ def get_google_drive_file_info(link):
|
|||
for k, v in response.cookies.items():
|
||||
if k.startswith("download_warning"):
|
||||
drive_url += f"&confirm={v}" # v is token
|
||||
cd = response.headers.get("content-disposition")
|
||||
if cd:
|
||||
if cd := response.headers.get("content-disposition"):
|
||||
filename = re.findall('filename="(.+)"', cd)[0]
|
||||
return drive_url, filename
|
||||
|
||||
|
|
|
|||
|
|
@ -189,8 +189,7 @@ class v8DetectionLoss:
|
|||
out = torch.zeros(batch_size, counts.max(), ne - 1, device=self.device)
|
||||
for j in range(batch_size):
|
||||
matches = i == j
|
||||
n = matches.sum()
|
||||
if n:
|
||||
if n := matches.sum():
|
||||
out[j, :n] = targets[matches, 1:]
|
||||
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
|
||||
return out
|
||||
|
|
@ -630,8 +629,7 @@ class v8OBBLoss(v8DetectionLoss):
|
|||
out = torch.zeros(batch_size, counts.max(), 6, device=self.device)
|
||||
for j in range(batch_size):
|
||||
matches = i == j
|
||||
n = matches.sum()
|
||||
if n:
|
||||
if n := matches.sum():
|
||||
bboxes = targets[matches, 2:]
|
||||
bboxes[..., :4].mul_(scale_tensor)
|
||||
out[j, :n] = torch.cat([targets[matches, 1:2], bboxes], dim=-1)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue