ultralytics 8.0.79 expand Docs reference section (#2053)

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Fri3dChicken <87434761+AmoghDhaliwal@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-04-16 12:28:12 +02:00 committed by GitHub
parent 47bd8b433b
commit 31db8ed163
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
106 changed files with 2570 additions and 529 deletions

View file

@ -22,7 +22,7 @@ def check_train_batch_size(model, imgsz=640, amp=True):
amp (bool): If True, use automatic mixed precision (AMP) for training.
Returns:
int: Optimal batch size computed using the autobatch() function.
(int): Optimal batch size computed using the autobatch() function.
"""
with torch.cuda.amp.autocast(amp):
@ -34,13 +34,13 @@ def autobatch(model, imgsz=640, fraction=0.67, batch_size=16):
Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory.
Args:
model: YOLO model to compute batch size for.
model (torch.nn.module): YOLO model to compute batch size for.
imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640.
fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.67.
batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16.
Returns:
int: The optimal batch size.
(int): The optimal batch size.
"""
# Check device