Update speed-estimation solution (#16798)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Muhammad Rizwan Munawar 2024-10-09 18:59:18 +05:00 committed by GitHub
parent 28f31f14e8
commit 30f64bd35f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 74 additions and 129 deletions

View file

@ -1,116 +1,76 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from collections import defaultdict
from time import time
import cv2
import numpy as np
from ultralytics.utils.checks import check_imshow
from ultralytics.solutions.solutions import BaseSolution, LineString
from ultralytics.utils.plotting import Annotator, colors
class SpeedEstimator:
class SpeedEstimator(BaseSolution):
"""A class to estimate the speed of objects in a real-time video stream based on their tracks."""
def __init__(self, names, reg_pts=None, view_img=False, line_thickness=2, spdl_dist_thresh=10):
"""
Initializes the SpeedEstimator with the given parameters.
def __init__(self, **kwargs):
"""Initializes the SpeedEstimator with the given parameters."""
super().__init__(**kwargs)
Args:
names (dict): Dictionary of class names.
reg_pts (list, optional): List of region points for speed estimation. Defaults to [(20, 400), (1260, 400)].
view_img (bool, optional): Whether to display the image with annotations. Defaults to False.
line_thickness (int, optional): Thickness of the lines for drawing boxes and tracks. Defaults to 2.
spdl_dist_thresh (int, optional): Distance threshold for speed calculation. Defaults to 10.
"""
# Region information
self.reg_pts = reg_pts if reg_pts is not None else [(20, 400), (1260, 400)]
self.initialize_region() # Initialize speed region
self.names = names # Classes names
# Tracking information
self.trk_history = defaultdict(list)
self.view_img = view_img # bool for displaying inference
self.tf = line_thickness # line thickness for annotator
self.spd = {} # set for speed data
self.trkd_ids = [] # list for already speed_estimated and tracked ID's
self.spdl = spdl_dist_thresh # Speed line distance threshold
self.trk_pt = {} # set for tracks previous time
self.trk_pp = {} # set for tracks previous point
# Check if the environment supports imshow
self.env_check = check_imshow(warn=True)
def estimate_speed(self, im0, tracks):
def estimate_speed(self, im0):
"""
Estimates the speed of objects based on tracking data.
Args:
im0 (ndarray): Image.
tracks (list): List of tracks obtained from the object tracking process.
Returns:
(ndarray): The image with annotated boxes and tracks.
im0 (ndarray): The input image that will be used for processing
Returns
im0 (ndarray): The processed image for more usage
"""
if tracks[0].boxes.id is None:
return im0
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
self.extract_tracks(im0) # Extract tracks
boxes = tracks[0].boxes.xyxy.cpu()
clss = tracks[0].boxes.cls.cpu().tolist()
t_ids = tracks[0].boxes.id.int().cpu().tolist()
annotator = Annotator(im0, line_width=self.tf)
annotator.draw_region(reg_pts=self.reg_pts, color=(255, 0, 255), thickness=self.tf * 2)
self.annotator.draw_region(
reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2
) # Draw region
for box, t_id, cls in zip(boxes, t_ids, clss):
track = self.trk_history[t_id]
bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))
track.append(bbox_center)
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
self.store_tracking_history(track_id, box) # Store track history
if len(track) > 30:
track.pop(0)
# Check if track_id is already in self.trk_pp or trk_pt initialize if not
if track_id not in self.trk_pt:
self.trk_pt[track_id] = 0
if track_id not in self.trk_pp:
self.trk_pp[track_id] = self.track_line[-1]
trk_pts = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
speed_label = f"{int(self.spd[track_id])} km/h" if track_id in self.spd else self.names[int(cls)]
self.annotator.box_label(box, label=speed_label, color=colors(track_id, True)) # Draw bounding box
if t_id not in self.trk_pt:
self.trk_pt[t_id] = 0
# Draw tracks of objects
self.annotator.draw_centroid_and_tracks(
self.track_line, color=colors(int(track_id), True), track_thickness=self.line_width
)
speed_label = f"{int(self.spd[t_id])} km/h" if t_id in self.spd else self.names[int(cls)]
bbox_color = colors(int(t_id), True)
annotator.box_label(box, speed_label, bbox_color)
cv2.polylines(im0, [trk_pts], isClosed=False, color=bbox_color, thickness=self.tf)
cv2.circle(im0, (int(track[-1][0]), int(track[-1][1])), self.tf * 2, bbox_color, -1)
# Calculation of object speed
if not self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]:
return
if self.reg_pts[1][1] - self.spdl < track[-1][1] < self.reg_pts[1][1] + self.spdl:
direction = "known"
elif self.reg_pts[0][1] - self.spdl < track[-1][1] < self.reg_pts[0][1] + self.spdl:
# Calculate object speed and direction based on region intersection
if LineString([self.trk_pp[track_id], self.track_line[-1]]).intersects(self.l_s):
direction = "known"
else:
direction = "unknown"
if self.trk_pt.get(t_id) != 0 and direction != "unknown" and t_id not in self.trkd_ids:
self.trkd_ids.append(t_id)
time_difference = time() - self.trk_pt[t_id]
# Perform speed calculation and tracking updates if direction is valid
if direction == "known" and track_id not in self.trkd_ids:
self.trkd_ids.append(track_id)
time_difference = time() - self.trk_pt[track_id]
if time_difference > 0:
self.spd[t_id] = np.abs(track[-1][1] - self.trk_pp[t_id][1]) / time_difference
self.spd[track_id] = np.abs(self.track_line[-1][1] - self.trk_pp[track_id][1]) / time_difference
self.trk_pt[t_id] = time()
self.trk_pp[t_id] = track[-1]
self.trk_pt[track_id] = time()
self.trk_pp[track_id] = self.track_line[-1]
if self.view_img and self.env_check:
cv2.imshow("Ultralytics Speed Estimation", im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
return
self.display_output(im0) # display output with base class function
return im0
if __name__ == "__main__":
names = {0: "person", 1: "car"} # example class names
speed_estimator = SpeedEstimator(names)
return im0 # return output image for more usage