ultralytics 8.1.27 batched tracking fixes (#8842)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
3555785167
commit
2ea6b2b889
5 changed files with 38 additions and 31 deletions
|
|
@ -30,6 +30,7 @@ Usage - formats:
|
|||
"""
|
||||
|
||||
import platform
|
||||
import re
|
||||
import threading
|
||||
from pathlib import Path
|
||||
|
||||
|
|
@ -236,7 +237,7 @@ class BasePredictor:
|
|||
self.run_callbacks("on_predict_start")
|
||||
for self.batch in self.dataset:
|
||||
self.run_callbacks("on_predict_batch_start")
|
||||
paths, im0s, is_video, s = self.batch
|
||||
paths, im0s, s = self.batch
|
||||
|
||||
# Preprocess
|
||||
with profilers[0]:
|
||||
|
|
@ -264,7 +265,7 @@ class BasePredictor:
|
|||
"postprocess": profilers[2].dt * 1e3 / n,
|
||||
}
|
||||
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
||||
s[i] += self.write_results(i, Path(paths[i]), im, is_video)
|
||||
s[i] += self.write_results(i, Path(paths[i]), im, s)
|
||||
|
||||
# Print batch results
|
||||
if self.args.verbose:
|
||||
|
|
@ -308,7 +309,7 @@ class BasePredictor:
|
|||
self.args.half = self.model.fp16 # update half
|
||||
self.model.eval()
|
||||
|
||||
def write_results(self, i, p, im, is_video):
|
||||
def write_results(self, i, p, im, s):
|
||||
"""Write inference results to a file or directory."""
|
||||
string = "" # print string
|
||||
if len(im.shape) == 3:
|
||||
|
|
@ -317,9 +318,10 @@ class BasePredictor:
|
|||
string += f"{i}: "
|
||||
frame = self.dataset.count
|
||||
else:
|
||||
frame = getattr(self.dataset, "frame", 0) - len(self.results) + i
|
||||
match = re.search(r"frame (\d+)/", s[i])
|
||||
frame = int(match.group(1)) if match else None # 0 if frame undetermined
|
||||
|
||||
self.txt_path = self.save_dir / "labels" / (p.stem + (f"_{frame}" if is_video[i] else ""))
|
||||
self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}"))
|
||||
string += "%gx%g " % im.shape[2:]
|
||||
result = self.results[i]
|
||||
result.save_dir = self.save_dir.__str__() # used in other locations
|
||||
|
|
@ -341,18 +343,19 @@ class BasePredictor:
|
|||
if self.args.save_crop:
|
||||
result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
|
||||
if self.args.show:
|
||||
self.show(str(p), is_video[i])
|
||||
self.show(str(p))
|
||||
if self.args.save:
|
||||
self.save_predicted_images(str(self.save_dir / p.name), is_video[i], frame)
|
||||
self.save_predicted_images(str(self.save_dir / p.name), frame)
|
||||
|
||||
return string
|
||||
|
||||
def save_predicted_images(self, save_path="", is_video=False, frame=0):
|
||||
def save_predicted_images(self, save_path="", frame=0):
|
||||
"""Save video predictions as mp4 at specified path."""
|
||||
im = self.plotted_img
|
||||
|
||||
# Save videos and streams
|
||||
if is_video:
|
||||
if self.dataset.mode in {"stream", "video"}:
|
||||
fps = self.dataset.fps if self.dataset.mode == "video" else 30
|
||||
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
|
||||
if save_path not in self.vid_writer: # new video
|
||||
if self.args.save_frames:
|
||||
|
|
@ -361,7 +364,7 @@ class BasePredictor:
|
|||
self.vid_writer[save_path] = cv2.VideoWriter(
|
||||
filename=str(Path(save_path).with_suffix(suffix)),
|
||||
fourcc=cv2.VideoWriter_fourcc(*fourcc),
|
||||
fps=30, # integer required, floats produce error in MP4 codec
|
||||
fps=fps, # integer required, floats produce error in MP4 codec
|
||||
frameSize=(im.shape[1], im.shape[0]), # (width, height)
|
||||
)
|
||||
|
||||
|
|
@ -374,7 +377,7 @@ class BasePredictor:
|
|||
else:
|
||||
cv2.imwrite(save_path, im)
|
||||
|
||||
def show(self, p="", is_video=False):
|
||||
def show(self, p=""):
|
||||
"""Display an image in a window using OpenCV imshow()."""
|
||||
im = self.plotted_img
|
||||
if platform.system() == "Linux" and p not in self.windows:
|
||||
|
|
@ -382,7 +385,7 @@ class BasePredictor:
|
|||
cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
||||
cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height)
|
||||
cv2.imshow(p, im)
|
||||
cv2.waitKey(1 if is_video else 500) # 1 millisecond
|
||||
cv2.waitKey(300 if self.dataset.mode == "image" else 1) # 1 millisecond
|
||||
|
||||
def run_callbacks(self, event: str):
|
||||
"""Runs all registered callbacks for a specific event."""
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue