ultralytics 8.1.27 batched tracking fixes (#8842)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Laughing 2024-03-12 02:29:41 +08:00 committed by GitHub
parent 3555785167
commit 2ea6b2b889
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 38 additions and 31 deletions

View file

@ -30,6 +30,7 @@ Usage - formats:
"""
import platform
import re
import threading
from pathlib import Path
@ -236,7 +237,7 @@ class BasePredictor:
self.run_callbacks("on_predict_start")
for self.batch in self.dataset:
self.run_callbacks("on_predict_batch_start")
paths, im0s, is_video, s = self.batch
paths, im0s, s = self.batch
# Preprocess
with profilers[0]:
@ -264,7 +265,7 @@ class BasePredictor:
"postprocess": profilers[2].dt * 1e3 / n,
}
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
s[i] += self.write_results(i, Path(paths[i]), im, is_video)
s[i] += self.write_results(i, Path(paths[i]), im, s)
# Print batch results
if self.args.verbose:
@ -308,7 +309,7 @@ class BasePredictor:
self.args.half = self.model.fp16 # update half
self.model.eval()
def write_results(self, i, p, im, is_video):
def write_results(self, i, p, im, s):
"""Write inference results to a file or directory."""
string = "" # print string
if len(im.shape) == 3:
@ -317,9 +318,10 @@ class BasePredictor:
string += f"{i}: "
frame = self.dataset.count
else:
frame = getattr(self.dataset, "frame", 0) - len(self.results) + i
match = re.search(r"frame (\d+)/", s[i])
frame = int(match.group(1)) if match else None # 0 if frame undetermined
self.txt_path = self.save_dir / "labels" / (p.stem + (f"_{frame}" if is_video[i] else ""))
self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}"))
string += "%gx%g " % im.shape[2:]
result = self.results[i]
result.save_dir = self.save_dir.__str__() # used in other locations
@ -341,18 +343,19 @@ class BasePredictor:
if self.args.save_crop:
result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
if self.args.show:
self.show(str(p), is_video[i])
self.show(str(p))
if self.args.save:
self.save_predicted_images(str(self.save_dir / p.name), is_video[i], frame)
self.save_predicted_images(str(self.save_dir / p.name), frame)
return string
def save_predicted_images(self, save_path="", is_video=False, frame=0):
def save_predicted_images(self, save_path="", frame=0):
"""Save video predictions as mp4 at specified path."""
im = self.plotted_img
# Save videos and streams
if is_video:
if self.dataset.mode in {"stream", "video"}:
fps = self.dataset.fps if self.dataset.mode == "video" else 30
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
if save_path not in self.vid_writer: # new video
if self.args.save_frames:
@ -361,7 +364,7 @@ class BasePredictor:
self.vid_writer[save_path] = cv2.VideoWriter(
filename=str(Path(save_path).with_suffix(suffix)),
fourcc=cv2.VideoWriter_fourcc(*fourcc),
fps=30, # integer required, floats produce error in MP4 codec
fps=fps, # integer required, floats produce error in MP4 codec
frameSize=(im.shape[1], im.shape[0]), # (width, height)
)
@ -374,7 +377,7 @@ class BasePredictor:
else:
cv2.imwrite(save_path, im)
def show(self, p="", is_video=False):
def show(self, p=""):
"""Display an image in a window using OpenCV imshow()."""
im = self.plotted_img
if platform.system() == "Linux" and p not in self.windows:
@ -382,7 +385,7 @@ class BasePredictor:
cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height)
cv2.imshow(p, im)
cv2.waitKey(1 if is_video else 500) # 1 millisecond
cv2.waitKey(300 if self.dataset.mode == "image" else 1) # 1 millisecond
def run_callbacks(self, event: str):
"""Runs all registered callbacks for a specific event."""