Refactor all Ultralytics Solutions (#12790)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: RizwanMunawar <chr043416@gmail.com>
This commit is contained in:
parent
a2ecb24176
commit
2af71d15a6
134 changed files with 845 additions and 1020 deletions
|
|
@ -1 +1,19 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .ai_gym import AIGym
|
||||
from .distance_calculation import DistanceCalculation
|
||||
from .heatmap import Heatmap
|
||||
from .object_counter import ObjectCounter
|
||||
from .parking_management import ParkingManagement
|
||||
from .queue_management import QueueManager
|
||||
from .speed_estimation import SpeedEstimator
|
||||
|
||||
__all__ = (
|
||||
"AIGym",
|
||||
"DistanceCalculation",
|
||||
"Heatmap",
|
||||
"ObjectCounter",
|
||||
"ParkingManagement",
|
||||
"QueueManager",
|
||||
"SpeedEstimator",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -9,34 +9,7 @@ from ultralytics.utils.plotting import Annotator
|
|||
class AIGym:
|
||||
"""A class to manage the gym steps of people in a real-time video stream based on their poses."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes the AIGym with default values for Visual and Image parameters."""
|
||||
|
||||
# Image and line thickness
|
||||
self.im0 = None
|
||||
self.tf = None
|
||||
|
||||
# Keypoints and count information
|
||||
self.keypoints = None
|
||||
self.poseup_angle = None
|
||||
self.posedown_angle = None
|
||||
self.threshold = 0.001
|
||||
|
||||
# Store stage, count and angle information
|
||||
self.angle = None
|
||||
self.count = None
|
||||
self.stage = None
|
||||
self.pose_type = "pushup"
|
||||
self.kpts_to_check = None
|
||||
|
||||
# Visual Information
|
||||
self.view_img = False
|
||||
self.annotator = None
|
||||
|
||||
# Check if environment support imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def set_args(
|
||||
def __init__(
|
||||
self,
|
||||
kpts_to_check,
|
||||
line_thickness=2,
|
||||
|
|
@ -46,22 +19,40 @@ class AIGym:
|
|||
pose_type="pullup",
|
||||
):
|
||||
"""
|
||||
Configures the AIGym line_thickness, save image and view image parameters.
|
||||
Initializes the AIGym class with the specified parameters.
|
||||
|
||||
Args:
|
||||
kpts_to_check (list): 3 keypoints for counting
|
||||
line_thickness (int): Line thickness for bounding boxes.
|
||||
view_img (bool): display the im0
|
||||
pose_up_angle (float): Angle to set pose position up
|
||||
pose_down_angle (float): Angle to set pose position down
|
||||
pose_type (str): "pushup", "pullup" or "abworkout"
|
||||
kpts_to_check (list): Indices of keypoints to check.
|
||||
line_thickness (int, optional): Thickness of the lines drawn. Defaults to 2.
|
||||
view_img (bool, optional): Flag to display the image. Defaults to False.
|
||||
pose_up_angle (float, optional): Angle threshold for the 'up' pose. Defaults to 145.0.
|
||||
pose_down_angle (float, optional): Angle threshold for the 'down' pose. Defaults to 90.0.
|
||||
pose_type (str, optional): Type of pose to detect ('pullup', 'pushup', 'abworkout'). Defaults to "pullup".
|
||||
"""
|
||||
self.kpts_to_check = kpts_to_check
|
||||
|
||||
# Image and line thickness
|
||||
self.im0 = None
|
||||
self.tf = line_thickness
|
||||
self.view_img = view_img
|
||||
|
||||
# Keypoints and count information
|
||||
self.keypoints = None
|
||||
self.poseup_angle = pose_up_angle
|
||||
self.posedown_angle = pose_down_angle
|
||||
self.threshold = 0.001
|
||||
|
||||
# Store stage, count and angle information
|
||||
self.angle = None
|
||||
self.count = None
|
||||
self.stage = None
|
||||
self.pose_type = pose_type
|
||||
self.kpts_to_check = kpts_to_check
|
||||
|
||||
# Visual Information
|
||||
self.view_img = view_img
|
||||
self.annotator = None
|
||||
|
||||
# Check if environment supports imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def start_counting(self, im0, results, frame_count):
|
||||
"""
|
||||
|
|
@ -69,19 +60,24 @@ class AIGym:
|
|||
|
||||
Args:
|
||||
im0 (ndarray): Current frame from the video stream.
|
||||
results (list): Pose estimation data
|
||||
frame_count (int): store current frame count
|
||||
results (list): Pose estimation data.
|
||||
frame_count (int): Current frame count.
|
||||
"""
|
||||
|
||||
self.im0 = im0
|
||||
|
||||
# Initialize count, angle, and stage lists on the first frame
|
||||
if frame_count == 1:
|
||||
self.count = [0] * len(results[0])
|
||||
self.angle = [0] * len(results[0])
|
||||
self.stage = ["-" for _ in results[0]]
|
||||
|
||||
self.keypoints = results[0].keypoints.data
|
||||
self.annotator = Annotator(im0, line_width=2)
|
||||
|
||||
for ind, k in enumerate(reversed(self.keypoints)):
|
||||
if self.pose_type in {"pushup", "pullup"}:
|
||||
# Estimate angle and draw specific points based on pose type
|
||||
if self.pose_type in {"pushup", "pullup", "abworkout"}:
|
||||
self.angle[ind] = self.annotator.estimate_pose_angle(
|
||||
k[int(self.kpts_to_check[0])].cpu(),
|
||||
k[int(self.kpts_to_check[1])].cpu(),
|
||||
|
|
@ -89,55 +85,32 @@ class AIGym:
|
|||
)
|
||||
self.im0 = self.annotator.draw_specific_points(k, self.kpts_to_check, shape=(640, 640), radius=10)
|
||||
|
||||
if self.pose_type == "abworkout":
|
||||
self.angle[ind] = self.annotator.estimate_pose_angle(
|
||||
k[int(self.kpts_to_check[0])].cpu(),
|
||||
k[int(self.kpts_to_check[1])].cpu(),
|
||||
k[int(self.kpts_to_check[2])].cpu(),
|
||||
)
|
||||
self.im0 = self.annotator.draw_specific_points(k, self.kpts_to_check, shape=(640, 640), radius=10)
|
||||
if self.angle[ind] > self.poseup_angle:
|
||||
self.stage[ind] = "down"
|
||||
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "down":
|
||||
self.stage[ind] = "up"
|
||||
self.count[ind] += 1
|
||||
# Check and update pose stages and counts based on angle
|
||||
if self.pose_type in {"abworkout", "pullup"}:
|
||||
if self.angle[ind] > self.poseup_angle:
|
||||
self.stage[ind] = "down"
|
||||
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "down":
|
||||
self.stage[ind] = "up"
|
||||
self.count[ind] += 1
|
||||
|
||||
elif self.pose_type == "pushup":
|
||||
if self.angle[ind] > self.poseup_angle:
|
||||
self.stage[ind] = "up"
|
||||
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "up":
|
||||
self.stage[ind] = "down"
|
||||
self.count[ind] += 1
|
||||
|
||||
self.annotator.plot_angle_and_count_and_stage(
|
||||
angle_text=self.angle[ind],
|
||||
count_text=self.count[ind],
|
||||
stage_text=self.stage[ind],
|
||||
center_kpt=k[int(self.kpts_to_check[1])],
|
||||
line_thickness=self.tf,
|
||||
)
|
||||
|
||||
if self.pose_type == "pushup":
|
||||
if self.angle[ind] > self.poseup_angle:
|
||||
self.stage[ind] = "up"
|
||||
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "up":
|
||||
self.stage[ind] = "down"
|
||||
self.count[ind] += 1
|
||||
self.annotator.plot_angle_and_count_and_stage(
|
||||
angle_text=self.angle[ind],
|
||||
count_text=self.count[ind],
|
||||
stage_text=self.stage[ind],
|
||||
center_kpt=k[int(self.kpts_to_check[1])],
|
||||
line_thickness=self.tf,
|
||||
)
|
||||
if self.pose_type == "pullup":
|
||||
if self.angle[ind] > self.poseup_angle:
|
||||
self.stage[ind] = "down"
|
||||
if self.angle[ind] < self.posedown_angle and self.stage[ind] == "down":
|
||||
self.stage[ind] = "up"
|
||||
self.count[ind] += 1
|
||||
self.annotator.plot_angle_and_count_and_stage(
|
||||
angle_text=self.angle[ind],
|
||||
count_text=self.count[ind],
|
||||
stage_text=self.stage[ind],
|
||||
center_kpt=k[int(self.kpts_to_check[1])],
|
||||
line_thickness=self.tf,
|
||||
)
|
||||
|
||||
# Draw keypoints
|
||||
self.annotator.kpts(k, shape=(640, 640), radius=1, kpt_line=True)
|
||||
|
||||
# Display the image if environment supports it and view_img is True
|
||||
if self.env_check and self.view_img:
|
||||
cv2.imshow("Ultralytics YOLOv8 AI GYM", self.im0)
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
|
|
@ -147,4 +120,5 @@ class AIGym:
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
AIGym()
|
||||
kpts_to_check = [0, 1, 2] # example keypoints
|
||||
aigym = AIGym(kpts_to_check)
|
||||
|
|
|
|||
|
|
@ -9,39 +9,9 @@ from ultralytics.utils.plotting import Annotator, colors
|
|||
|
||||
|
||||
class DistanceCalculation:
|
||||
"""A class to calculate distance between two objects in real-time video stream based on their tracks."""
|
||||
"""A class to calculate distance between two objects in a real-time video stream based on their tracks."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes the distance calculation class with default values for Visual, Image, track and distance
|
||||
parameters.
|
||||
"""
|
||||
|
||||
# Visual & im0 information
|
||||
self.im0 = None
|
||||
self.annotator = None
|
||||
self.view_img = False
|
||||
self.line_color = (255, 255, 0)
|
||||
self.centroid_color = (255, 0, 255)
|
||||
|
||||
# Predict/track information
|
||||
self.clss = None
|
||||
self.names = None
|
||||
self.boxes = None
|
||||
self.line_thickness = 2
|
||||
self.trk_ids = None
|
||||
|
||||
# Distance calculation information
|
||||
self.centroids = []
|
||||
self.pixel_per_meter = 10
|
||||
|
||||
# Mouse event
|
||||
self.left_mouse_count = 0
|
||||
self.selected_boxes = {}
|
||||
|
||||
# Check if environment support imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def set_args(
|
||||
def __init__(
|
||||
self,
|
||||
names,
|
||||
pixels_per_meter=10,
|
||||
|
|
@ -51,52 +21,66 @@ class DistanceCalculation:
|
|||
centroid_color=(255, 0, 255),
|
||||
):
|
||||
"""
|
||||
Configures the distance calculation and display parameters.
|
||||
Initializes the DistanceCalculation class with the given parameters.
|
||||
|
||||
Args:
|
||||
names (dict): object detection classes names
|
||||
pixels_per_meter (int): Number of pixels in meter
|
||||
view_img (bool): Flag indicating frame display
|
||||
line_thickness (int): Line thickness for bounding boxes.
|
||||
line_color (RGB): color of centroids line
|
||||
centroid_color (RGB): colors of bbox centroids
|
||||
names (dict): Dictionary mapping class indices to class names.
|
||||
pixels_per_meter (int, optional): Conversion factor from pixels to meters. Defaults to 10.
|
||||
view_img (bool, optional): Flag to indicate if the video stream should be displayed. Defaults to False.
|
||||
line_thickness (int, optional): Thickness of the lines drawn on the image. Defaults to 2.
|
||||
line_color (tuple, optional): Color of the lines drawn on the image (BGR format). Defaults to (255, 255, 0).
|
||||
centroid_color (tuple, optional): Color of the centroids drawn (BGR format). Defaults to (255, 0, 255).
|
||||
"""
|
||||
self.names = names
|
||||
self.pixel_per_meter = pixels_per_meter
|
||||
# Visual & image information
|
||||
self.im0 = None
|
||||
self.annotator = None
|
||||
self.view_img = view_img
|
||||
self.line_thickness = line_thickness
|
||||
self.line_color = line_color
|
||||
self.centroid_color = centroid_color
|
||||
|
||||
# Prediction & tracking information
|
||||
self.clss = None
|
||||
self.names = names
|
||||
self.boxes = None
|
||||
self.line_thickness = line_thickness
|
||||
self.trk_ids = None
|
||||
|
||||
# Distance calculation information
|
||||
self.centroids = []
|
||||
self.pixel_per_meter = pixels_per_meter
|
||||
|
||||
# Mouse event information
|
||||
self.left_mouse_count = 0
|
||||
self.selected_boxes = {}
|
||||
|
||||
# Check if environment supports imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def mouse_event_for_distance(self, event, x, y, flags, param):
|
||||
"""
|
||||
This function is designed to move region with mouse events in a real-time video stream.
|
||||
Handles mouse events to select regions in a real-time video stream.
|
||||
|
||||
Args:
|
||||
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
|
||||
x (int): The x-coordinate of the mouse pointer.
|
||||
y (int): The y-coordinate of the mouse pointer.
|
||||
flags (int): Any flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY,
|
||||
cv2.EVENT_FLAG_SHIFTKEY, etc.).
|
||||
param (dict): Additional parameters you may want to pass to the function.
|
||||
event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
|
||||
x (int): X-coordinate of the mouse pointer.
|
||||
y (int): Y-coordinate of the mouse pointer.
|
||||
flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
|
||||
param (dict): Additional parameters passed to the function.
|
||||
"""
|
||||
global selected_boxes
|
||||
global left_mouse_count
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.left_mouse_count += 1
|
||||
if self.left_mouse_count <= 2:
|
||||
for box, track_id in zip(self.boxes, self.trk_ids):
|
||||
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes:
|
||||
self.selected_boxes[track_id] = []
|
||||
self.selected_boxes[track_id] = box
|
||||
|
||||
if event == cv2.EVENT_RBUTTONDOWN:
|
||||
elif event == cv2.EVENT_RBUTTONDOWN:
|
||||
self.selected_boxes = {}
|
||||
self.left_mouse_count = 0
|
||||
|
||||
def extract_tracks(self, tracks):
|
||||
"""
|
||||
Extracts results from the provided data.
|
||||
Extracts tracking results from the provided data.
|
||||
|
||||
Args:
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
|
|
@ -105,55 +89,65 @@ class DistanceCalculation:
|
|||
self.clss = tracks[0].boxes.cls.cpu().tolist()
|
||||
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
|
||||
|
||||
def calculate_centroid(self, box):
|
||||
@staticmethod
|
||||
def calculate_centroid(box):
|
||||
"""
|
||||
Calculate the centroid of bounding box.
|
||||
Calculates the centroid of a bounding box.
|
||||
|
||||
Args:
|
||||
box (list): Bounding box data
|
||||
box (list): Bounding box coordinates [x1, y1, x2, y2].
|
||||
|
||||
Returns:
|
||||
(tuple): Centroid coordinates (x, y).
|
||||
"""
|
||||
return int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)
|
||||
|
||||
def calculate_distance(self, centroid1, centroid2):
|
||||
"""
|
||||
Calculate distance between two centroids.
|
||||
Calculates the distance between two centroids.
|
||||
|
||||
Args:
|
||||
centroid1 (point): First bounding box data
|
||||
centroid2 (point): Second bounding box data
|
||||
centroid1 (tuple): Coordinates of the first centroid (x, y).
|
||||
centroid2 (tuple): Coordinates of the second centroid (x, y).
|
||||
|
||||
Returns:
|
||||
(tuple): Distance in meters and millimeters.
|
||||
"""
|
||||
pixel_distance = math.sqrt((centroid1[0] - centroid2[0]) ** 2 + (centroid1[1] - centroid2[1]) ** 2)
|
||||
return pixel_distance / self.pixel_per_meter, (pixel_distance / self.pixel_per_meter) * 1000
|
||||
distance_m = pixel_distance / self.pixel_per_meter
|
||||
distance_mm = distance_m * 1000
|
||||
return distance_m, distance_mm
|
||||
|
||||
def start_process(self, im0, tracks):
|
||||
"""
|
||||
Calculate distance between two bounding boxes based on tracking data.
|
||||
Processes the video frame and calculates the distance between two bounding boxes.
|
||||
|
||||
Args:
|
||||
im0 (nd array): Image
|
||||
im0 (ndarray): The image frame.
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
|
||||
Returns:
|
||||
(ndarray): The processed image frame.
|
||||
"""
|
||||
self.im0 = im0
|
||||
if tracks[0].boxes.id is None:
|
||||
if self.view_img:
|
||||
self.display_frames()
|
||||
return
|
||||
self.extract_tracks(tracks)
|
||||
return im0
|
||||
|
||||
self.annotator = Annotator(self.im0, line_width=2)
|
||||
self.extract_tracks(tracks)
|
||||
self.annotator = Annotator(self.im0, line_width=self.line_thickness)
|
||||
|
||||
for box, cls, track_id in zip(self.boxes, self.clss, self.trk_ids):
|
||||
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
|
||||
|
||||
if len(self.selected_boxes) == 2:
|
||||
for trk_id, _ in self.selected_boxes.items():
|
||||
for trk_id in self.selected_boxes.keys():
|
||||
if trk_id == track_id:
|
||||
self.selected_boxes[track_id] = box
|
||||
|
||||
if len(self.selected_boxes) == 2:
|
||||
for trk_id, box in self.selected_boxes.items():
|
||||
centroid = self.calculate_centroid(self.selected_boxes[trk_id])
|
||||
self.centroids.append(centroid)
|
||||
self.centroids = [self.calculate_centroid(self.selected_boxes[trk_id]) for trk_id in self.selected_boxes]
|
||||
|
||||
distance_m, distance_mm = self.calculate_distance(self.centroids[0], self.centroids[1])
|
||||
self.annotator.plot_distance_and_line(
|
||||
|
|
@ -168,7 +162,7 @@ class DistanceCalculation:
|
|||
return im0
|
||||
|
||||
def display_frames(self):
|
||||
"""Display frame."""
|
||||
"""Displays the current frame with annotations."""
|
||||
cv2.namedWindow("Ultralytics Distance Estimation")
|
||||
cv2.setMouseCallback("Ultralytics Distance Estimation", self.mouse_event_for_distance)
|
||||
cv2.imshow("Ultralytics Distance Estimation", self.im0)
|
||||
|
|
@ -178,4 +172,5 @@ class DistanceCalculation:
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
DistanceCalculation()
|
||||
names = {0: "person", 1: "car"} # example class names
|
||||
distance_calculation = DistanceCalculation(names)
|
||||
|
|
|
|||
|
|
@ -16,62 +16,11 @@ from shapely.geometry import LineString, Point, Polygon
|
|||
class Heatmap:
|
||||
"""A class to draw heatmaps in real-time video stream based on their tracks."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters."""
|
||||
|
||||
# Visual information
|
||||
self.annotator = None
|
||||
self.view_img = False
|
||||
self.shape = "circle"
|
||||
|
||||
self.names = None # Classes names
|
||||
|
||||
# Image information
|
||||
self.imw = None
|
||||
self.imh = None
|
||||
self.im0 = None
|
||||
self.tf = 2
|
||||
self.view_in_counts = True
|
||||
self.view_out_counts = True
|
||||
|
||||
# Heatmap colormap and heatmap np array
|
||||
self.colormap = None
|
||||
self.heatmap = None
|
||||
self.heatmap_alpha = 0.5
|
||||
|
||||
# Predict/track information
|
||||
self.boxes = None
|
||||
self.track_ids = None
|
||||
self.clss = None
|
||||
self.track_history = defaultdict(list)
|
||||
|
||||
# Region & Line Information
|
||||
self.count_reg_pts = None
|
||||
self.counting_region = None
|
||||
self.line_dist_thresh = 15
|
||||
self.region_thickness = 5
|
||||
self.region_color = (255, 0, 255)
|
||||
|
||||
# Object Counting Information
|
||||
self.in_counts = 0
|
||||
self.out_counts = 0
|
||||
self.count_ids = []
|
||||
self.class_wise_count = {}
|
||||
self.count_txt_color = (0, 0, 0)
|
||||
self.count_bg_color = (255, 255, 255)
|
||||
self.cls_txtdisplay_gap = 50
|
||||
|
||||
# Decay factor
|
||||
self.decay_factor = 0.99
|
||||
|
||||
# Check if environment support imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def set_args(
|
||||
def __init__(
|
||||
self,
|
||||
imw,
|
||||
imh,
|
||||
classes_names=None,
|
||||
classes_names,
|
||||
imw=0,
|
||||
imh=0,
|
||||
colormap=cv2.COLORMAP_JET,
|
||||
heatmap_alpha=0.5,
|
||||
view_img=False,
|
||||
|
|
@ -87,71 +36,78 @@ class Heatmap:
|
|||
decay_factor=0.99,
|
||||
shape="circle",
|
||||
):
|
||||
"""
|
||||
Configures the heatmap colormap, width, height and display parameters.
|
||||
"""Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters."""
|
||||
|
||||
Args:
|
||||
colormap (cv2.COLORMAP): The colormap to be set.
|
||||
imw (int): The width of the frame.
|
||||
imh (int): The height of the frame.
|
||||
classes_names (dict): Classes names
|
||||
line_thickness (int): Line thickness for bounding boxes.
|
||||
heatmap_alpha (float): alpha value for heatmap display
|
||||
view_img (bool): Flag indicating frame display
|
||||
view_in_counts (bool): Flag to control whether to display the incounts on video stream.
|
||||
view_out_counts (bool): Flag to control whether to display the outcounts on video stream.
|
||||
count_reg_pts (list): Object counting region points
|
||||
count_txt_color (RGB color): count text color value
|
||||
count_bg_color (RGB color): count highlighter line color
|
||||
count_reg_color (RGB color): Color of object counting region
|
||||
region_thickness (int): Object counting Region thickness
|
||||
line_dist_thresh (int): Euclidean Distance threshold for line counter
|
||||
decay_factor (float): value for removing heatmap area after object passed
|
||||
shape (str): Heatmap shape, rect or circle shape supported
|
||||
"""
|
||||
self.tf = line_thickness
|
||||
self.names = classes_names
|
||||
# Visual information
|
||||
self.annotator = None
|
||||
self.view_img = view_img
|
||||
self.shape = shape
|
||||
|
||||
self.initialized = False
|
||||
self.names = classes_names # Classes names
|
||||
|
||||
# Image information
|
||||
self.imw = imw
|
||||
self.imh = imh
|
||||
self.heatmap_alpha = heatmap_alpha
|
||||
self.view_img = view_img
|
||||
self.im0 = None
|
||||
self.tf = line_thickness
|
||||
self.view_in_counts = view_in_counts
|
||||
self.view_out_counts = view_out_counts
|
||||
|
||||
# Heatmap colormap and heatmap np array
|
||||
self.colormap = colormap
|
||||
self.heatmap = None
|
||||
self.heatmap_alpha = heatmap_alpha
|
||||
|
||||
# Predict/track information
|
||||
self.boxes = None
|
||||
self.track_ids = None
|
||||
self.clss = None
|
||||
self.track_history = defaultdict(list)
|
||||
|
||||
# Region & Line Information
|
||||
self.counting_region = None
|
||||
self.line_dist_thresh = line_dist_thresh
|
||||
self.region_thickness = region_thickness
|
||||
self.region_color = count_reg_color
|
||||
|
||||
# Object Counting Information
|
||||
self.in_counts = 0
|
||||
self.out_counts = 0
|
||||
self.count_ids = []
|
||||
self.class_wise_count = {}
|
||||
self.count_txt_color = count_txt_color
|
||||
self.count_bg_color = count_bg_color
|
||||
self.cls_txtdisplay_gap = 50
|
||||
|
||||
# Decay factor
|
||||
self.decay_factor = decay_factor
|
||||
|
||||
# Check if environment supports imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
# Region and line selection
|
||||
if count_reg_pts is not None:
|
||||
if len(count_reg_pts) == 2:
|
||||
self.count_reg_pts = count_reg_pts
|
||||
print(self.count_reg_pts)
|
||||
if self.count_reg_pts is not None:
|
||||
if len(self.count_reg_pts) == 2:
|
||||
print("Line Counter Initiated.")
|
||||
self.count_reg_pts = count_reg_pts
|
||||
self.counting_region = LineString(self.count_reg_pts)
|
||||
elif len(count_reg_pts) >= 3:
|
||||
elif len(self.count_reg_pts) >= 3:
|
||||
print("Polygon Counter Initiated.")
|
||||
self.count_reg_pts = count_reg_pts
|
||||
self.counting_region = Polygon(self.count_reg_pts)
|
||||
else:
|
||||
print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.")
|
||||
print("Using Line Counter Now")
|
||||
self.counting_region = LineString(self.count_reg_pts)
|
||||
|
||||
# Heatmap new frame
|
||||
self.heatmap = np.zeros((int(self.imh), int(self.imw)), dtype=np.float32)
|
||||
|
||||
self.count_txt_color = count_txt_color
|
||||
self.count_bg_color = count_bg_color
|
||||
self.region_color = count_reg_color
|
||||
self.region_thickness = region_thickness
|
||||
self.decay_factor = decay_factor
|
||||
self.line_dist_thresh = line_dist_thresh
|
||||
self.shape = shape
|
||||
|
||||
# shape of heatmap, if not selected
|
||||
# Shape of heatmap, if not selected
|
||||
if self.shape not in {"circle", "rect"}:
|
||||
print("Unknown shape value provided, 'circle' & 'rect' supported")
|
||||
print("Using Circular shape now")
|
||||
self.shape = "circle"
|
||||
|
||||
def extract_results(self, tracks):
|
||||
def extract_results(self, tracks, _intialized=False):
|
||||
"""
|
||||
Extracts results from the provided data.
|
||||
|
||||
|
|
@ -171,18 +127,20 @@ class Heatmap:
|
|||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
"""
|
||||
self.im0 = im0
|
||||
if tracks[0].boxes.id is None:
|
||||
self.heatmap = np.zeros((int(self.imh), int(self.imw)), dtype=np.float32)
|
||||
if self.view_img and self.env_check:
|
||||
self.display_frames()
|
||||
return im0
|
||||
|
||||
# Initialize heatmap only once
|
||||
if not self.initialized:
|
||||
self.heatmap = np.zeros((int(self.im0.shape[0]), int(self.im0.shape[1])), dtype=np.float32)
|
||||
self.initialized = True
|
||||
|
||||
self.heatmap *= self.decay_factor # decay factor
|
||||
|
||||
self.extract_results(tracks)
|
||||
self.annotator = Annotator(self.im0, self.tf, None)
|
||||
|
||||
if self.count_reg_pts is not None:
|
||||
if self.track_ids is not None:
|
||||
# Draw counting region
|
||||
if self.view_in_counts or self.view_out_counts:
|
||||
if self.count_reg_pts is not None:
|
||||
self.annotator.draw_region(
|
||||
reg_pts=self.count_reg_pts, color=self.region_color, thickness=self.region_thickness
|
||||
)
|
||||
|
|
@ -214,25 +172,12 @@ class Heatmap:
|
|||
|
||||
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
|
||||
|
||||
# Count objects in any polygon
|
||||
if len(self.count_reg_pts) >= 3:
|
||||
is_inside = self.counting_region.contains(Point(track_line[-1]))
|
||||
if self.count_reg_pts is not None:
|
||||
# Count objects in any polygon
|
||||
if len(self.count_reg_pts) >= 3:
|
||||
is_inside = self.counting_region.contains(Point(track_line[-1]))
|
||||
|
||||
if prev_position is not None and is_inside and track_id not in self.count_ids:
|
||||
self.count_ids.append(track_id)
|
||||
|
||||
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
|
||||
self.in_counts += 1
|
||||
self.class_wise_count[self.names[cls]]["IN"] += 1
|
||||
else:
|
||||
self.out_counts += 1
|
||||
self.class_wise_count[self.names[cls]]["OUT"] += 1
|
||||
|
||||
# Count objects using line
|
||||
elif len(self.count_reg_pts) == 2:
|
||||
if prev_position is not None and track_id not in self.count_ids:
|
||||
distance = Point(track_line[-1]).distance(self.counting_region)
|
||||
if distance < self.line_dist_thresh and track_id not in self.count_ids:
|
||||
if prev_position is not None and is_inside and track_id not in self.count_ids:
|
||||
self.count_ids.append(track_id)
|
||||
|
||||
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
|
||||
|
|
@ -242,6 +187,22 @@ class Heatmap:
|
|||
self.out_counts += 1
|
||||
self.class_wise_count[self.names[cls]]["OUT"] += 1
|
||||
|
||||
# Count objects using line
|
||||
elif len(self.count_reg_pts) == 2:
|
||||
if prev_position is not None and track_id not in self.count_ids:
|
||||
distance = Point(track_line[-1]).distance(self.counting_region)
|
||||
if distance < self.line_dist_thresh and track_id not in self.count_ids:
|
||||
self.count_ids.append(track_id)
|
||||
|
||||
if (box[0] - prev_position[0]) * (
|
||||
self.counting_region.centroid.x - prev_position[0]
|
||||
) > 0:
|
||||
self.in_counts += 1
|
||||
self.class_wise_count[self.names[cls]]["IN"] += 1
|
||||
else:
|
||||
self.out_counts += 1
|
||||
self.class_wise_count[self.names[cls]]["OUT"] += 1
|
||||
|
||||
else:
|
||||
for box, cls in zip(self.boxes, self.clss):
|
||||
if self.shape == "circle":
|
||||
|
|
@ -258,26 +219,26 @@ class Heatmap:
|
|||
else:
|
||||
self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += 2
|
||||
|
||||
if self.count_reg_pts is not None:
|
||||
labels_dict = {}
|
||||
|
||||
for key, value in self.class_wise_count.items():
|
||||
if value["IN"] != 0 or value["OUT"] != 0:
|
||||
if not self.view_in_counts and not self.view_out_counts:
|
||||
continue
|
||||
elif not self.view_in_counts:
|
||||
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
|
||||
elif not self.view_out_counts:
|
||||
labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
|
||||
else:
|
||||
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"
|
||||
|
||||
if labels_dict is not None:
|
||||
self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)
|
||||
|
||||
# Normalize, apply colormap to heatmap and combine with original image
|
||||
heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX)
|
||||
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap)
|
||||
|
||||
labels_dict = {}
|
||||
|
||||
for key, value in self.class_wise_count.items():
|
||||
if value["IN"] != 0 or value["OUT"] != 0:
|
||||
if not self.view_in_counts and not self.view_out_counts:
|
||||
continue
|
||||
elif not self.view_in_counts:
|
||||
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
|
||||
elif not self.view_out_counts:
|
||||
labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
|
||||
else:
|
||||
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"
|
||||
|
||||
if labels_dict is not None:
|
||||
self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)
|
||||
|
||||
self.im0 = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)
|
||||
|
||||
if self.env_check and self.view_img:
|
||||
|
|
@ -294,4 +255,5 @@ class Heatmap:
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
Heatmap()
|
||||
classes_names = {0: "person", 1: "car"} # example class names
|
||||
heatmap = Heatmap(classes_names)
|
||||
|
|
|
|||
|
|
@ -15,55 +15,10 @@ from shapely.geometry import LineString, Point, Polygon
|
|||
class ObjectCounter:
|
||||
"""A class to manage the counting of objects in a real-time video stream based on their tracks."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes the Counter with default values for various tracking and counting parameters."""
|
||||
|
||||
# Mouse events
|
||||
self.is_drawing = False
|
||||
self.selected_point = None
|
||||
|
||||
# Region & Line Information
|
||||
self.reg_pts = [(20, 400), (1260, 400)]
|
||||
self.line_dist_thresh = 15
|
||||
self.counting_region = None
|
||||
self.region_color = (255, 0, 255)
|
||||
self.region_thickness = 5
|
||||
|
||||
# Image and annotation Information
|
||||
self.im0 = None
|
||||
self.tf = None
|
||||
self.view_img = False
|
||||
self.view_in_counts = True
|
||||
self.view_out_counts = True
|
||||
|
||||
self.names = None # Classes names
|
||||
self.annotator = None # Annotator
|
||||
self.window_name = "Ultralytics YOLOv8 Object Counter"
|
||||
|
||||
# Object counting Information
|
||||
self.in_counts = 0
|
||||
self.out_counts = 0
|
||||
self.count_ids = []
|
||||
self.class_wise_count = {}
|
||||
self.count_txt_thickness = 0
|
||||
self.count_txt_color = (255, 255, 255)
|
||||
self.count_bg_color = (255, 255, 255)
|
||||
self.cls_txtdisplay_gap = 50
|
||||
self.fontsize = 0.6
|
||||
|
||||
# Tracks info
|
||||
self.track_history = defaultdict(list)
|
||||
self.track_thickness = 2
|
||||
self.draw_tracks = False
|
||||
self.track_color = None
|
||||
|
||||
# Check if environment support imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def set_args(
|
||||
def __init__(
|
||||
self,
|
||||
classes_names,
|
||||
reg_pts,
|
||||
reg_pts=None,
|
||||
count_reg_color=(255, 0, 255),
|
||||
count_txt_color=(0, 0, 0),
|
||||
count_bg_color=(255, 255, 255),
|
||||
|
|
@ -79,66 +34,90 @@ class ObjectCounter:
|
|||
cls_txtdisplay_gap=50,
|
||||
):
|
||||
"""
|
||||
Configures the Counter's image, bounding box line thickness, and counting region points.
|
||||
Initializes the ObjectCounter with various tracking and counting parameters.
|
||||
|
||||
Args:
|
||||
classes_names (dict): Dictionary of class names.
|
||||
reg_pts (list): List of points defining the counting region.
|
||||
count_reg_color (tuple): RGB color of the counting region.
|
||||
count_txt_color (tuple): RGB color of the count text.
|
||||
count_bg_color (tuple): RGB color of the count text background.
|
||||
line_thickness (int): Line thickness for bounding boxes.
|
||||
track_thickness (int): Thickness of the track lines.
|
||||
view_img (bool): Flag to control whether to display the video stream.
|
||||
view_in_counts (bool): Flag to control whether to display the incounts on video stream.
|
||||
view_out_counts (bool): Flag to control whether to display the outcounts on video stream.
|
||||
reg_pts (list): Initial list of points defining the counting region.
|
||||
classes_names (dict): Classes names
|
||||
track_thickness (int): Track thickness
|
||||
draw_tracks (Bool): draw tracks
|
||||
count_txt_color (RGB color): count text color value
|
||||
count_bg_color (RGB color): count highlighter line color
|
||||
count_reg_color (RGB color): Color of object counting region
|
||||
track_color (RGB color): color for tracks
|
||||
region_thickness (int): Object counting Region thickness
|
||||
line_dist_thresh (int): Euclidean Distance threshold for line counter
|
||||
cls_txtdisplay_gap (int): Display gap between each class count
|
||||
view_in_counts (bool): Flag to control whether to display the in counts on the video stream.
|
||||
view_out_counts (bool): Flag to control whether to display the out counts on the video stream.
|
||||
draw_tracks (bool): Flag to control whether to draw the object tracks.
|
||||
track_color (tuple): RGB color of the tracks.
|
||||
region_thickness (int): Thickness of the object counting region.
|
||||
line_dist_thresh (int): Euclidean distance threshold for line counter.
|
||||
cls_txtdisplay_gap (int): Display gap between each class count.
|
||||
"""
|
||||
|
||||
# Mouse events
|
||||
self.is_drawing = False
|
||||
self.selected_point = None
|
||||
|
||||
# Region & Line Information
|
||||
self.reg_pts = [(20, 400), (1260, 400)] if reg_pts is None else reg_pts
|
||||
self.line_dist_thresh = line_dist_thresh
|
||||
self.counting_region = None
|
||||
self.region_color = count_reg_color
|
||||
self.region_thickness = region_thickness
|
||||
|
||||
# Image and annotation Information
|
||||
self.im0 = None
|
||||
self.tf = line_thickness
|
||||
self.view_img = view_img
|
||||
self.view_in_counts = view_in_counts
|
||||
self.view_out_counts = view_out_counts
|
||||
|
||||
self.names = classes_names # Classes names
|
||||
self.annotator = None # Annotator
|
||||
self.window_name = "Ultralytics YOLOv8 Object Counter"
|
||||
|
||||
# Object counting Information
|
||||
self.in_counts = 0
|
||||
self.out_counts = 0
|
||||
self.count_ids = []
|
||||
self.class_wise_count = {}
|
||||
self.count_txt_thickness = 0
|
||||
self.count_txt_color = count_txt_color
|
||||
self.count_bg_color = count_bg_color
|
||||
self.cls_txtdisplay_gap = cls_txtdisplay_gap
|
||||
self.fontsize = 0.6
|
||||
|
||||
# Tracks info
|
||||
self.track_history = defaultdict(list)
|
||||
self.track_thickness = track_thickness
|
||||
self.draw_tracks = draw_tracks
|
||||
self.track_color = track_color
|
||||
|
||||
# Region and line selection
|
||||
if len(reg_pts) == 2:
|
||||
# Check if environment supports imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
# Initialize counting region
|
||||
if len(self.reg_pts) == 2:
|
||||
print("Line Counter Initiated.")
|
||||
self.reg_pts = reg_pts
|
||||
self.counting_region = LineString(self.reg_pts)
|
||||
elif len(reg_pts) >= 3:
|
||||
elif len(self.reg_pts) >= 3:
|
||||
print("Polygon Counter Initiated.")
|
||||
self.reg_pts = reg_pts
|
||||
self.counting_region = Polygon(self.reg_pts)
|
||||
else:
|
||||
print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.")
|
||||
print("Using Line Counter Now")
|
||||
self.counting_region = LineString(self.reg_pts)
|
||||
|
||||
self.names = classes_names
|
||||
self.track_color = track_color
|
||||
self.count_txt_color = count_txt_color
|
||||
self.count_bg_color = count_bg_color
|
||||
self.region_color = count_reg_color
|
||||
self.region_thickness = region_thickness
|
||||
self.line_dist_thresh = line_dist_thresh
|
||||
self.cls_txtdisplay_gap = cls_txtdisplay_gap
|
||||
|
||||
def mouse_event_for_region(self, event, x, y, flags, params):
|
||||
"""
|
||||
This function is designed to move region with mouse events in a real-time video stream.
|
||||
Handles mouse events for defining and moving the counting region in a real-time video stream.
|
||||
|
||||
Args:
|
||||
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
|
||||
x (int): The x-coordinate of the mouse pointer.
|
||||
y (int): The y-coordinate of the mouse pointer.
|
||||
flags (int): Any flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY,
|
||||
cv2.EVENT_FLAG_SHIFTKEY, etc.).
|
||||
params (dict): Additional parameters you may want to pass to the function.
|
||||
flags (int): Any associated event flags (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
|
||||
params (dict): Additional parameters for the function.
|
||||
"""
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
for i, point in enumerate(self.reg_pts):
|
||||
|
|
@ -240,11 +219,11 @@ class ObjectCounter:
|
|||
else:
|
||||
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"
|
||||
|
||||
if labels_dict is not None:
|
||||
if labels_dict:
|
||||
self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)
|
||||
|
||||
def display_frames(self):
|
||||
"""Display frame."""
|
||||
"""Displays the current frame with annotations and regions in a window."""
|
||||
if self.env_check:
|
||||
cv2.namedWindow(self.window_name)
|
||||
if len(self.reg_pts) == 4: # only add mouse event If user drawn region
|
||||
|
|
@ -271,4 +250,5 @@ class ObjectCounter:
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ObjectCounter()
|
||||
classes_names = {0: "person", 1: "car"} # example class names
|
||||
ObjectCounter(classes_names)
|
||||
|
|
|
|||
|
|
@ -8,17 +8,22 @@ from PIL import Image, ImageTk
|
|||
from ultralytics.utils.checks import check_imshow, check_requirements
|
||||
from ultralytics.utils.plotting import Annotator
|
||||
|
||||
check_requirements("tkinter")
|
||||
import tkinter as tk
|
||||
|
||||
|
||||
class ParkingPtsSelection:
|
||||
def __init__(self, master):
|
||||
"""Initializes the UI for selecting parking zone points in a tkinter window."""
|
||||
"""
|
||||
Initializes the UI for selecting parking zone points in a tkinter window.
|
||||
|
||||
Args:
|
||||
master (tk.Tk): The main tkinter window object.
|
||||
"""
|
||||
check_requirements("tkinter")
|
||||
import tkinter as tk
|
||||
|
||||
self.master = master
|
||||
master.title("Ultralytics Parking Zones Points Selector")
|
||||
|
||||
# Resizable false
|
||||
# Disable window resizing
|
||||
master.resizable(False, False)
|
||||
|
||||
# Setup canvas for image display
|
||||
|
|
@ -36,7 +41,6 @@ class ParkingPtsSelection:
|
|||
self.image_path = None
|
||||
self.image = None
|
||||
self.canvas_image = None
|
||||
self.canvas = None
|
||||
self.bounding_boxes = []
|
||||
self.current_box = []
|
||||
self.img_width = 0
|
||||
|
|
@ -101,7 +105,6 @@ class ParkingPtsSelection:
|
|||
Args:
|
||||
box (list): Bounding box data
|
||||
"""
|
||||
|
||||
for i in range(4):
|
||||
x1, y1 = box[i]
|
||||
x2, y2 = box[(i + 1) % 4]
|
||||
|
|
@ -151,6 +154,17 @@ class ParkingManagement:
|
|||
available_region_color=(0, 0, 255),
|
||||
margin=10,
|
||||
):
|
||||
"""
|
||||
Initializes the parking management system with a YOLOv8 model and visualization settings.
|
||||
|
||||
Args:
|
||||
model_path (str): Path to the YOLOv8 model.
|
||||
txt_color (tuple): RGB color tuple for text.
|
||||
bg_color (tuple): RGB color tuple for background.
|
||||
occupied_region_color (tuple): RGB color tuple for occupied regions.
|
||||
available_region_color (tuple): RGB color tuple for available regions.
|
||||
margin (int): Margin for text display.
|
||||
"""
|
||||
# Model path and initialization
|
||||
self.model_path = model_path
|
||||
self.model = self.load_model()
|
||||
|
|
@ -166,7 +180,7 @@ class ParkingManagement:
|
|||
self.available_region_color = available_region_color
|
||||
|
||||
self.window_name = "Ultralytics YOLOv8 Parking Management System"
|
||||
# Check if environment support imshow
|
||||
# Check if environment supports imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def load_model(self):
|
||||
|
|
@ -184,7 +198,6 @@ class ParkingManagement:
|
|||
Args:
|
||||
json_file (str): file that have all parking slot points
|
||||
"""
|
||||
|
||||
with open(json_file, "r") as json_file:
|
||||
return json.load(json_file)
|
||||
|
||||
|
|
|
|||
|
|
@ -13,49 +13,12 @@ from shapely.geometry import Point, Polygon
|
|||
|
||||
|
||||
class QueueManager:
|
||||
"""A class to manage the queue management in real-time video stream based on their tracks."""
|
||||
"""A class to manage the queue in a real-time video stream based on object tracks."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes the queue manager with default values for various tracking and counting parameters."""
|
||||
|
||||
# Mouse events
|
||||
self.is_drawing = False
|
||||
self.selected_point = None
|
||||
|
||||
# Region & Line Information
|
||||
self.reg_pts = [(20, 60), (20, 680), (1120, 680), (1120, 60)]
|
||||
self.counting_region = None
|
||||
self.region_color = (255, 0, 255)
|
||||
self.region_thickness = 5
|
||||
|
||||
# Image and annotation Information
|
||||
self.im0 = None
|
||||
self.tf = None
|
||||
self.view_img = False
|
||||
self.view_queue_counts = True
|
||||
self.fontsize = 0.6
|
||||
|
||||
self.names = None # Classes names
|
||||
self.annotator = None # Annotator
|
||||
self.window_name = "Ultralytics YOLOv8 Queue Manager"
|
||||
|
||||
# Object counting Information
|
||||
self.counts = 0
|
||||
self.count_txt_color = (255, 255, 255)
|
||||
|
||||
# Tracks info
|
||||
self.track_history = defaultdict(list)
|
||||
self.track_thickness = 2
|
||||
self.draw_tracks = False
|
||||
self.track_color = None
|
||||
|
||||
# Check if environment support imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def set_args(
|
||||
def __init__(
|
||||
self,
|
||||
classes_names,
|
||||
reg_pts,
|
||||
reg_pts=None,
|
||||
line_thickness=2,
|
||||
track_thickness=2,
|
||||
view_img=False,
|
||||
|
|
@ -68,48 +31,65 @@ class QueueManager:
|
|||
fontsize=0.7,
|
||||
):
|
||||
"""
|
||||
Configures the Counter's image, bounding box line thickness, and counting region points.
|
||||
Initializes the QueueManager with specified parameters for tracking and counting objects.
|
||||
|
||||
Args:
|
||||
line_thickness (int): Line thickness for bounding boxes.
|
||||
view_img (bool): Flag to control whether to display the video stream.
|
||||
view_queue_counts (bool): Flag to control whether to display the counts on video stream.
|
||||
reg_pts (list): Initial list of points defining the counting region.
|
||||
classes_names (dict): Classes names
|
||||
region_color (RGB color): Color of queue region
|
||||
track_thickness (int): Track thickness
|
||||
draw_tracks (Bool): draw tracks
|
||||
count_txt_color (RGB color): count text color value
|
||||
track_color (RGB color): color for tracks
|
||||
region_thickness (int): Object counting Region thickness
|
||||
fontsize (float): Text display font size
|
||||
classes_names (dict): A dictionary mapping class IDs to class names.
|
||||
reg_pts (list of tuples, optional): Points defining the counting region polygon. Defaults to a predefined
|
||||
rectangle.
|
||||
line_thickness (int, optional): Thickness of the annotation lines. Defaults to 2.
|
||||
track_thickness (int, optional): Thickness of the track lines. Defaults to 2.
|
||||
view_img (bool, optional): Whether to display the image frames. Defaults to False.
|
||||
region_color (tuple, optional): Color of the counting region lines (BGR). Defaults to (255, 0, 255).
|
||||
view_queue_counts (bool, optional): Whether to display the queue counts. Defaults to True.
|
||||
draw_tracks (bool, optional): Whether to draw tracks of the objects. Defaults to False.
|
||||
count_txt_color (tuple, optional): Color of the count text (BGR). Defaults to (255, 255, 255).
|
||||
track_color (tuple, optional): Color of the tracks. If None, different colors will be used for different
|
||||
tracks. Defaults to None.
|
||||
region_thickness (int, optional): Thickness of the counting region lines. Defaults to 5.
|
||||
fontsize (float, optional): Font size for the text annotations. Defaults to 0.7.
|
||||
"""
|
||||
|
||||
# Mouse events state
|
||||
self.is_drawing = False
|
||||
self.selected_point = None
|
||||
|
||||
# Region & Line Information
|
||||
self.reg_pts = reg_pts if reg_pts is not None else [(20, 60), (20, 680), (1120, 680), (1120, 60)]
|
||||
self.counting_region = (
|
||||
Polygon(self.reg_pts) if len(self.reg_pts) >= 3 else Polygon([(20, 60), (20, 680), (1120, 680), (1120, 60)])
|
||||
)
|
||||
self.region_color = region_color
|
||||
self.region_thickness = region_thickness
|
||||
|
||||
# Image and annotation Information
|
||||
self.im0 = None
|
||||
self.tf = line_thickness
|
||||
self.view_img = view_img
|
||||
self.view_queue_counts = view_queue_counts
|
||||
self.fontsize = fontsize
|
||||
|
||||
self.names = classes_names # Class names
|
||||
self.annotator = None # Annotator
|
||||
self.window_name = "Ultralytics YOLOv8 Queue Manager"
|
||||
|
||||
# Object counting Information
|
||||
self.counts = 0
|
||||
self.count_txt_color = count_txt_color
|
||||
|
||||
# Tracks info
|
||||
self.track_history = defaultdict(list)
|
||||
self.track_thickness = track_thickness
|
||||
self.draw_tracks = draw_tracks
|
||||
self.region_color = region_color
|
||||
|
||||
if len(reg_pts) >= 3:
|
||||
print("Queue region initiated...")
|
||||
self.reg_pts = reg_pts
|
||||
self.counting_region = Polygon(self.reg_pts)
|
||||
else:
|
||||
print("Invalid region points provided...")
|
||||
print("Using default region now....")
|
||||
self.counting_region = Polygon(self.reg_pts)
|
||||
|
||||
self.names = classes_names
|
||||
self.track_color = track_color
|
||||
self.count_txt_color = count_txt_color
|
||||
self.region_thickness = region_thickness
|
||||
self.fontsize = fontsize
|
||||
|
||||
# Check if environment supports imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def extract_and_process_tracks(self, tracks):
|
||||
"""Extracts and processes tracks for queue management in a video stream."""
|
||||
|
||||
# Annotator Init and queue region drawing
|
||||
# Initialize annotator and draw the queue region
|
||||
self.annotator = Annotator(self.im0, self.tf, self.names)
|
||||
|
||||
if tracks[0].boxes.id is not None:
|
||||
|
|
@ -122,48 +102,48 @@ class QueueManager:
|
|||
# Draw bounding box
|
||||
self.annotator.box_label(box, label=f"{self.names[cls]}#{track_id}", color=colors(int(track_id), True))
|
||||
|
||||
# Draw Tracks
|
||||
# Update track history
|
||||
track_line = self.track_history[track_id]
|
||||
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
|
||||
if len(track_line) > 30:
|
||||
track_line.pop(0)
|
||||
|
||||
# Draw track trails
|
||||
# Draw track trails if enabled
|
||||
if self.draw_tracks:
|
||||
self.annotator.draw_centroid_and_tracks(
|
||||
track_line,
|
||||
color=self.track_color if self.track_color else colors(int(track_id), True),
|
||||
color=self.track_color or colors(int(track_id), True),
|
||||
track_thickness=self.track_thickness,
|
||||
)
|
||||
|
||||
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
|
||||
|
||||
# Check if the object is inside the counting region
|
||||
if len(self.reg_pts) >= 3:
|
||||
is_inside = self.counting_region.contains(Point(track_line[-1]))
|
||||
if prev_position is not None and is_inside:
|
||||
self.counts += 1
|
||||
|
||||
label = "Queue Counts : " + str(self.counts)
|
||||
|
||||
# Display queue counts
|
||||
label = f"Queue Counts : {str(self.counts)}"
|
||||
if label is not None:
|
||||
self.annotator.queue_counts_display(
|
||||
label,
|
||||
points=self.reg_pts,
|
||||
region_color=self.region_color,
|
||||
txt_color=self.count_txt_color,
|
||||
fontsize=self.fontsize,
|
||||
)
|
||||
|
||||
self.counts = 0
|
||||
self.counts = 0 # Reset counts after displaying
|
||||
self.display_frames()
|
||||
|
||||
def display_frames(self):
|
||||
"""Display frame."""
|
||||
"""Displays the current frame with annotations."""
|
||||
if self.env_check:
|
||||
self.annotator.draw_region(reg_pts=self.reg_pts, thickness=self.region_thickness, color=self.region_color)
|
||||
cv2.namedWindow(self.window_name)
|
||||
cv2.imshow(self.window_name, self.im0)
|
||||
# Break Window
|
||||
# Close window on 'q' key press
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
return
|
||||
|
||||
|
|
@ -175,13 +155,14 @@ class QueueManager:
|
|||
im0 (ndarray): Current frame from the video stream.
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
"""
|
||||
self.im0 = im0 # store image
|
||||
self.extract_and_process_tracks(tracks) # draw region even if no objects
|
||||
self.im0 = im0 # Store the current frame
|
||||
self.extract_and_process_tracks(tracks) # Extract and process tracks
|
||||
|
||||
if self.view_img:
|
||||
self.display_frames()
|
||||
self.display_frames() # Display the frame if enabled
|
||||
return self.im0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
QueueManager()
|
||||
classes_names = {0: "person", 1: "car"} # example class names
|
||||
queue_manager = QueueManager(classes_names)
|
||||
|
|
|
|||
|
|
@ -11,73 +11,52 @@ from ultralytics.utils.plotting import Annotator, colors
|
|||
|
||||
|
||||
class SpeedEstimator:
|
||||
"""A class to estimation speed of objects in real-time video stream based on their tracks."""
|
||||
"""A class to estimate the speed of objects in a real-time video stream based on their tracks."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes the speed-estimator class with default values for Visual, Image, track and speed parameters."""
|
||||
def __init__(self, names, reg_pts=None, view_img=False, line_thickness=2, region_thickness=5, spdl_dist_thresh=10):
|
||||
"""
|
||||
Initializes the SpeedEstimator with the given parameters.
|
||||
|
||||
# Visual & im0 information
|
||||
Args:
|
||||
names (dict): Dictionary of class names.
|
||||
reg_pts (list, optional): List of region points for speed estimation. Defaults to [(20, 400), (1260, 400)].
|
||||
view_img (bool, optional): Whether to display the image with annotations. Defaults to False.
|
||||
line_thickness (int, optional): Thickness of the lines for drawing boxes and tracks. Defaults to 2.
|
||||
region_thickness (int, optional): Thickness of the region lines. Defaults to 5.
|
||||
spdl_dist_thresh (int, optional): Distance threshold for speed calculation. Defaults to 10.
|
||||
"""
|
||||
# Visual & image information
|
||||
self.im0 = None
|
||||
self.annotator = None
|
||||
self.view_img = False
|
||||
self.view_img = view_img
|
||||
|
||||
# Region information
|
||||
self.reg_pts = [(20, 400), (1260, 400)]
|
||||
self.region_thickness = 3
|
||||
self.reg_pts = reg_pts if reg_pts is not None else [(20, 400), (1260, 400)]
|
||||
self.region_thickness = region_thickness
|
||||
|
||||
# Predict/track information
|
||||
# Tracking information
|
||||
self.clss = None
|
||||
self.names = None
|
||||
self.names = names
|
||||
self.boxes = None
|
||||
self.trk_ids = None
|
||||
self.trk_pts = None
|
||||
self.line_thickness = 2
|
||||
self.line_thickness = line_thickness
|
||||
self.trk_history = defaultdict(list)
|
||||
|
||||
# Speed estimator information
|
||||
# Speed estimation information
|
||||
self.current_time = 0
|
||||
self.dist_data = {}
|
||||
self.trk_idslist = []
|
||||
self.spdl_dist_thresh = 10
|
||||
self.spdl_dist_thresh = spdl_dist_thresh
|
||||
self.trk_previous_times = {}
|
||||
self.trk_previous_points = {}
|
||||
|
||||
# Check if environment support imshow
|
||||
# Check if the environment supports imshow
|
||||
self.env_check = check_imshow(warn=True)
|
||||
|
||||
def set_args(
|
||||
self,
|
||||
reg_pts,
|
||||
names,
|
||||
view_img=False,
|
||||
line_thickness=2,
|
||||
region_thickness=5,
|
||||
spdl_dist_thresh=10,
|
||||
):
|
||||
"""
|
||||
Configures the speed estimation and display parameters.
|
||||
|
||||
Args:
|
||||
reg_pts (list): Initial list of points defining the speed calculation region.
|
||||
names (dict): object detection classes names
|
||||
view_img (bool): Flag indicating frame display
|
||||
line_thickness (int): Line thickness for bounding boxes.
|
||||
region_thickness (int): Speed estimation region thickness
|
||||
spdl_dist_thresh (int): Euclidean distance threshold for speed line
|
||||
"""
|
||||
if reg_pts is None:
|
||||
print("Region points not provided, using default values")
|
||||
else:
|
||||
self.reg_pts = reg_pts
|
||||
self.names = names
|
||||
self.view_img = view_img
|
||||
self.line_thickness = line_thickness
|
||||
self.region_thickness = region_thickness
|
||||
self.spdl_dist_thresh = spdl_dist_thresh
|
||||
|
||||
def extract_tracks(self, tracks):
|
||||
"""
|
||||
Extracts results from the provided data.
|
||||
Extracts results from the provided tracking data.
|
||||
|
||||
Args:
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
|
|
@ -88,11 +67,14 @@ class SpeedEstimator:
|
|||
|
||||
def store_track_info(self, track_id, box):
|
||||
"""
|
||||
Store track data.
|
||||
Stores track data.
|
||||
|
||||
Args:
|
||||
track_id (int): object track id.
|
||||
box (list): object bounding box data
|
||||
track_id (int): Object track id.
|
||||
box (list): Object bounding box data.
|
||||
|
||||
Returns:
|
||||
(list): Updated tracking history for the given track_id.
|
||||
"""
|
||||
track = self.trk_history[track_id]
|
||||
bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))
|
||||
|
|
@ -106,43 +88,39 @@ class SpeedEstimator:
|
|||
|
||||
def plot_box_and_track(self, track_id, box, cls, track):
|
||||
"""
|
||||
Plot track and bounding box.
|
||||
Plots track and bounding box.
|
||||
|
||||
Args:
|
||||
track_id (int): object track id.
|
||||
box (list): object bounding box data
|
||||
cls (str): object class name
|
||||
track (list): tracking history for tracks path drawing
|
||||
track_id (int): Object track id.
|
||||
box (list): Object bounding box data.
|
||||
cls (str): Object class name.
|
||||
track (list): Tracking history for drawing tracks path.
|
||||
"""
|
||||
speed_label = f"{int(self.dist_data[track_id])}km/ph" if track_id in self.dist_data else self.names[int(cls)]
|
||||
speed_label = f"{int(self.dist_data[track_id])} km/h" if track_id in self.dist_data else self.names[int(cls)]
|
||||
bbox_color = colors(int(track_id)) if track_id in self.dist_data else (255, 0, 255)
|
||||
|
||||
self.annotator.box_label(box, speed_label, bbox_color)
|
||||
|
||||
cv2.polylines(self.im0, [self.trk_pts], isClosed=False, color=(0, 255, 0), thickness=1)
|
||||
cv2.circle(self.im0, (int(track[-1][0]), int(track[-1][1])), 5, bbox_color, -1)
|
||||
|
||||
def calculate_speed(self, trk_id, track):
|
||||
"""
|
||||
Calculation of object speed.
|
||||
Calculates the speed of an object.
|
||||
|
||||
Args:
|
||||
trk_id (int): object track id.
|
||||
track (list): tracking history for tracks path drawing
|
||||
trk_id (int): Object track id.
|
||||
track (list): Tracking history for drawing tracks path.
|
||||
"""
|
||||
|
||||
if not self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]:
|
||||
return
|
||||
if self.reg_pts[1][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[1][1] + self.spdl_dist_thresh:
|
||||
direction = "known"
|
||||
|
||||
elif self.reg_pts[0][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[0][1] + self.spdl_dist_thresh:
|
||||
direction = "known"
|
||||
|
||||
else:
|
||||
direction = "unknown"
|
||||
|
||||
if self.trk_previous_times[trk_id] != 0 and direction != "unknown" and trk_id not in self.trk_idslist:
|
||||
if self.trk_previous_times.get(trk_id) != 0 and direction != "unknown" and trk_id not in self.trk_idslist:
|
||||
self.trk_idslist.append(trk_id)
|
||||
|
||||
time_difference = time() - self.trk_previous_times[trk_id]
|
||||
|
|
@ -156,21 +134,24 @@ class SpeedEstimator:
|
|||
|
||||
def estimate_speed(self, im0, tracks, region_color=(255, 0, 0)):
|
||||
"""
|
||||
Calculate object based on tracking data.
|
||||
Estimates the speed of objects based on tracking data.
|
||||
|
||||
Args:
|
||||
im0 (nd array): Image
|
||||
im0 (ndarray): Image.
|
||||
tracks (list): List of tracks obtained from the object tracking process.
|
||||
region_color (tuple): Color to use when drawing regions.
|
||||
region_color (tuple, optional): Color to use when drawing regions. Defaults to (255, 0, 0).
|
||||
|
||||
Returns:
|
||||
(ndarray): The image with annotated boxes and tracks.
|
||||
"""
|
||||
self.im0 = im0
|
||||
if tracks[0].boxes.id is None:
|
||||
if self.view_img and self.env_check:
|
||||
self.display_frames()
|
||||
return im0
|
||||
self.extract_tracks(tracks)
|
||||
|
||||
self.annotator = Annotator(self.im0, line_width=2)
|
||||
self.extract_tracks(tracks)
|
||||
self.annotator = Annotator(self.im0, line_width=self.line_thickness)
|
||||
self.annotator.draw_region(reg_pts=self.reg_pts, color=region_color, thickness=self.region_thickness)
|
||||
|
||||
for box, trk_id, cls in zip(self.boxes, self.trk_ids, self.clss):
|
||||
|
|
@ -188,11 +169,12 @@ class SpeedEstimator:
|
|||
return im0
|
||||
|
||||
def display_frames(self):
|
||||
"""Display frame."""
|
||||
"""Displays the current frame."""
|
||||
cv2.imshow("Ultralytics Speed Estimation", self.im0)
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
SpeedEstimator()
|
||||
names = {0: "person", 1: "car"} # example class names
|
||||
speed_estimator = SpeedEstimator(names)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue