Refactor all Ultralytics Solutions (#12790)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: RizwanMunawar <chr043416@gmail.com>
This commit is contained in:
Glenn Jocher 2024-05-18 18:14:42 +02:00 committed by GitHub
parent a2ecb24176
commit 2af71d15a6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
134 changed files with 845 additions and 1020 deletions

View file

@ -28,30 +28,23 @@ Queue management using [Ultralytics YOLOv8](https://github.com/ultralytics/ultra
```python
import cv2
from ultralytics import YOLO
from ultralytics.solutions import queue_management
from ultralytics import YOLO, solutions
model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH,
cv2.CAP_PROP_FRAME_HEIGHT,
cv2.CAP_PROP_FPS))
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("queue_management.avi",
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(w, h))
video_writer = cv2.VideoWriter("queue_management.avi", cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
queue = queue_management.QueueManager()
queue.set_args(classes_names=model.names,
reg_pts=queue_region,
line_thickness=3,
fontsize=1.0,
region_color=(255, 144, 31))
queue = solutions.QueueManager(classes_names=model.names,
reg_pts=queue_region,
line_thickness=3,
fontsize=1.0,
region_color=(255, 144, 31))
while cap.isOpened():
success, im0 = cap.read()
@ -77,30 +70,23 @@ Queue management using [Ultralytics YOLOv8](https://github.com/ultralytics/ultra
```python
import cv2
from ultralytics import YOLO
from ultralytics.solutions import queue_management
from ultralytics import YOLO, solutions
model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH,
cv2.CAP_PROP_FRAME_HEIGHT,
cv2.CAP_PROP_FPS))
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("queue_management.avi",
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(w, h))
video_writer = cv2.VideoWriter("queue_management.avi", cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
queue_region = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
queue = queue_management.QueueManager()
queue.set_args(classes_names=model.names,
reg_pts=queue_region,
line_thickness=3,
fontsize=1.0,
region_color=(255, 144, 31))
queue = solutions.QueueManager(classes_names=model.names,
reg_pts=queue_region,
line_thickness=3,
fontsize=1.0,
region_color=(255, 144, 31))
while cap.isOpened():
success, im0 = cap.read()
@ -122,22 +108,22 @@ Queue management using [Ultralytics YOLOv8](https://github.com/ultralytics/ultra
cv2.destroyAllWindows()
```
### Optional Arguments `set_args`
### Arguments `QueueManager`
| Name | Type | Default | Description |
|---------------------|-------------|----------------------------|---------------------------------------------|
| `view_img` | `bool` | `False` | Display frames with counts |
| `view_queue_counts` | `bool` | `True` | Display Queue counts only on video frame |
| `line_thickness` | `int` | `2` | Increase bounding boxes thickness |
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area |
| `classes_names` | `dict` | `model.model.names` | Dictionary of Class Names |
| `region_color` | `RGB Color` | `(255, 0, 255)` | Color of the Object counting Region or Line |
| `track_thickness` | `int` | `2` | Thickness of Tracking Lines |
| `draw_tracks` | `bool` | `False` | Enable drawing Track lines |
| `track_color` | `RGB Color` | `(0, 255, 0)` | Color for each track line |
| `count_txt_color` | `RGB Color` | `(255, 255, 255)` | Foreground color for Object counts text |
| `region_thickness` | `int` | `5` | Thickness for object counter region or line |
| `fontsize` | `float` | `0.6` | Font size of counting text |
| Name | Type | Default | Description |
|---------------------|------------------|----------------------------|-------------------------------------------------------------------------------------|
| `classes_names` | `dict` | `model.names` | A dictionary mapping class IDs to class names. |
| `reg_pts` | `list of tuples` | `[(20, 400), (1260, 400)]` | Points defining the counting region polygon. Defaults to a predefined rectangle. |
| `line_thickness` | `int` | `2` | Thickness of the annotation lines. |
| `track_thickness` | `int` | `2` | Thickness of the track lines. |
| `view_img` | `bool` | `False` | Whether to display the image frames. |
| `region_color` | `tuple` | `(255, 0, 255)` | Color of the counting region lines (BGR). |
| `view_queue_counts` | `bool` | `True` | Whether to display the queue counts. |
| `draw_tracks` | `bool` | `False` | Whether to draw tracks of the objects. |
| `count_txt_color` | `tuple` | `(255, 255, 255)` | Color of the count text (BGR). |
| `track_color` | `tuple` | `None` | Color of the tracks. If `None`, different colors will be used for different tracks. |
| `region_thickness` | `int` | `5` | Thickness of the counting region lines. |
| `fontsize` | `float` | `0.7` | Font size for the text annotations. |
### Arguments `model.track`