Refactor all Ultralytics Solutions (#12790)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: RizwanMunawar <chr043416@gmail.com>
This commit is contained in:
parent
a2ecb24176
commit
2af71d15a6
134 changed files with 845 additions and 1020 deletions
|
|
@ -51,42 +51,39 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
=== "Count in Region"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import object_counter
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
|
||||
|
||||
# Define region points
|
||||
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
||||
|
||||
|
||||
# Video writer
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
||||
cv2.VideoWriter_fourcc(*'mp4v'),
|
||||
fps,
|
||||
(w, h))
|
||||
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
|
||||
# Init Object Counter
|
||||
counter = object_counter.ObjectCounter()
|
||||
counter.set_args(view_img=True,
|
||||
reg_pts=region_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2)
|
||||
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True,
|
||||
reg_pts=region_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2,
|
||||
)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
|
||||
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
video_writer.write(im0)
|
||||
|
||||
|
||||
cap.release()
|
||||
video_writer.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
|
@ -95,9 +92,8 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
=== "Count in Polygon"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import object_counter
|
||||
import cv2
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
|
|
@ -108,18 +104,16 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]
|
||||
|
||||
# Video writer
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
||||
cv2.VideoWriter_fourcc(*'mp4v'),
|
||||
fps,
|
||||
(w, h))
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
|
||||
# Init Object Counter
|
||||
counter = object_counter.ObjectCounter()
|
||||
counter.set_args(view_img=True,
|
||||
reg_pts=region_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2)
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True,
|
||||
reg_pts=region_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2,
|
||||
)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
|
|
@ -139,42 +133,39 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
=== "Count in Line"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import object_counter
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
|
||||
|
||||
# Define line points
|
||||
line_points = [(20, 400), (1080, 400)]
|
||||
|
||||
|
||||
# Video writer
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
||||
cv2.VideoWriter_fourcc(*'mp4v'),
|
||||
fps,
|
||||
(w, h))
|
||||
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
|
||||
# Init Object Counter
|
||||
counter = object_counter.ObjectCounter()
|
||||
counter.set_args(view_img=True,
|
||||
reg_pts=line_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2)
|
||||
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True,
|
||||
reg_pts=line_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2,
|
||||
)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False)
|
||||
|
||||
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
video_writer.write(im0)
|
||||
|
||||
|
||||
cap.release()
|
||||
video_writer.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
|
@ -183,43 +174,39 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
=== "Specific Classes"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import object_counter
|
||||
import cv2
|
||||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
||||
|
||||
|
||||
line_points = [(20, 400), (1080, 400)] # line or region points
|
||||
classes_to_count = [0, 2] # person and car classes for count
|
||||
|
||||
|
||||
# Video writer
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
||||
cv2.VideoWriter_fourcc(*'mp4v'),
|
||||
fps,
|
||||
(w, h))
|
||||
|
||||
video_writer = cv2.VideoWriter("object_counting_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
|
||||
|
||||
# Init Object Counter
|
||||
counter = object_counter.ObjectCounter()
|
||||
counter.set_args(view_img=True,
|
||||
reg_pts=line_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2)
|
||||
|
||||
counter = solutions.ObjectCounter(
|
||||
view_img=True,
|
||||
reg_pts=line_points,
|
||||
classes_names=model.names,
|
||||
draw_tracks=True,
|
||||
line_thickness=2,
|
||||
)
|
||||
|
||||
while cap.isOpened():
|
||||
success, im0 = cap.read()
|
||||
if not success:
|
||||
print("Video frame is empty or video processing has been successfully completed.")
|
||||
break
|
||||
tracks = model.track(im0, persist=True, show=False,
|
||||
classes=classes_to_count)
|
||||
|
||||
tracks = model.track(im0, persist=True, show=False, classes=classes_to_count)
|
||||
|
||||
im0 = counter.start_counting(im0, tracks)
|
||||
video_writer.write(im0)
|
||||
|
||||
|
||||
cap.release()
|
||||
video_writer.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
|
@ -229,24 +216,27 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly
|
|||
|
||||
You can move the region anywhere in the frame by clicking on its edges
|
||||
|
||||
### Optional Arguments `set_args`
|
||||
### Argument `ObjectCounter`
|
||||
|
||||
| Name | Type | Default | Description |
|
||||
|--------------------|-------------|----------------------------|--------------------------------------------------|
|
||||
| `view_img` | `bool` | `False` | Display frames with counts |
|
||||
| `view_in_counts` | `bool` | `True` | Display in-counts only on video frame |
|
||||
| `view_out_counts` | `bool` | `True` | Display out-counts only on video frame |
|
||||
| `line_thickness` | `int` | `2` | Increase bounding boxes and count text thickness |
|
||||
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area |
|
||||
| `classes_names` | `dict` | `model.model.names` | Dictionary of Class Names |
|
||||
| `count_reg_color` | `RGB Color` | `(255, 0, 255)` | Color of the Object counting Region or Line |
|
||||
| `track_thickness` | `int` | `2` | Thickness of Tracking Lines |
|
||||
| `draw_tracks` | `bool` | `False` | Enable drawing Track lines |
|
||||
| `track_color` | `RGB Color` | `(0, 255, 0)` | Color for each track line |
|
||||
| `line_dist_thresh` | `int` | `15` | Euclidean Distance threshold for line counter |
|
||||
| `count_txt_color` | `RGB Color` | `(255, 255, 255)` | Foreground color for Object counts text |
|
||||
| `region_thickness` | `int` | `5` | Thickness for object counter region or line |
|
||||
| `count_bg_color` | `RGB Color` | `(255, 255, 255)` | Count highlighter color |
|
||||
Here's a table with the `ObjectCounter` arguments:
|
||||
|
||||
| Name | Type | Default | Description |
|
||||
|----------------------|---------|----------------------------|------------------------------------------------------------------------|
|
||||
| `classes_names` | `dict` | `None` | Dictionary of class names. |
|
||||
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | List of points defining the counting region. |
|
||||
| `count_reg_color` | `tuple` | `(255, 0, 255)` | RGB color of the counting region. |
|
||||
| `count_txt_color` | `tuple` | `(0, 0, 0)` | RGB color of the count text. |
|
||||
| `count_bg_color` | `tuple` | `(255, 255, 255)` | RGB color of the count text background. |
|
||||
| `line_thickness` | `int` | `2` | Line thickness for bounding boxes. |
|
||||
| `track_thickness` | `int` | `2` | Thickness of the track lines. |
|
||||
| `view_img` | `bool` | `False` | Flag to control whether to display the video stream. |
|
||||
| `view_in_counts` | `bool` | `True` | Flag to control whether to display the in counts on the video stream. |
|
||||
| `view_out_counts` | `bool` | `True` | Flag to control whether to display the out counts on the video stream. |
|
||||
| `draw_tracks` | `bool` | `False` | Flag to control whether to draw the object tracks. |
|
||||
| `track_color` | `tuple` | `None` | RGB color of the tracks. |
|
||||
| `region_thickness` | `int` | `5` | Thickness of the object counting region. |
|
||||
| `line_dist_thresh` | `int` | `15` | Euclidean distance threshold for line counter. |
|
||||
| `cls_txtdisplay_gap` | `int` | `50` | Display gap between each class count. |
|
||||
|
||||
### Arguments `model.track`
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue