Update URLs to redirects (#16048)
This commit is contained in:
parent
ac2c2be8f3
commit
2a73bf7046
92 changed files with 253 additions and 253 deletions
|
|
@ -6,7 +6,7 @@ keywords: YOLOv10, real-time object detection, NMS-free, deep learning, Tsinghua
|
|||
|
||||
# YOLOv10: Real-Time End-to-End Object Detection
|
||||
|
||||
YOLOv10, built on the [Ultralytics](https://ultralytics.com) [Python package](https://pypi.org/project/ultralytics/) by researchers at [Tsinghua University](https://www.tsinghua.edu.cn/en/), introduces a new approach to real-time object detection, addressing both the post-processing and model architecture deficiencies found in previous YOLO versions. By eliminating non-maximum suppression (NMS) and optimizing various model components, YOLOv10 achieves state-of-the-art performance with significantly reduced computational overhead. Extensive experiments demonstrate its superior accuracy-latency trade-offs across multiple model scales.
|
||||
YOLOv10, built on the [Ultralytics](https://www.ultralytics.com/) [Python package](https://pypi.org/project/ultralytics/) by researchers at [Tsinghua University](https://www.tsinghua.edu.cn/en/), introduces a new approach to real-time object detection, addressing both the post-processing and model architecture deficiencies found in previous YOLO versions. By eliminating non-maximum suppression (NMS) and optimizing various model components, YOLOv10 achieves state-of-the-art performance with significantly reduced computational overhead. Extensive experiments demonstrate its superior accuracy-latency trade-offs across multiple model scales.
|
||||
|
||||

|
||||
|
||||
|
|
@ -223,7 +223,7 @@ YOLOv10 sets a new standard in real-time object detection by addressing the shor
|
|||
|
||||
## Citations and Acknowledgements
|
||||
|
||||
We would like to acknowledge the YOLOv10 authors from [Tsinghua University](https://www.tsinghua.edu.cn/en/) for their extensive research and significant contributions to the [Ultralytics](https://ultralytics.com) framework:
|
||||
We would like to acknowledge the YOLOv10 authors from [Tsinghua University](https://www.tsinghua.edu.cn/en/) for their extensive research and significant contributions to the [Ultralytics](https://www.ultralytics.com/) framework:
|
||||
|
||||
!!! Quote ""
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue