Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Muhammad Rizwan Munawar <muhammadrizwanmunawar123@gmail.com>
This commit is contained in:
Glenn Jocher 2024-04-26 17:17:04 +02:00 committed by GitHub
parent 5323ee0d58
commit 2944be6644
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 52 additions and 16 deletions

View file

@ -56,6 +56,10 @@ The default tracker is BoT-SORT.
## Tracking
!!! Warning "Tracker Threshold Information"
If object confidence score will be low, i.e lower than [`track_high_thresh`](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/trackers/bytetrack.yaml#L5), then there will be no tracks successfully returned and updated.
To run the tracker on video streams, use a trained Detect, Segment or Pose model such as YOLOv8n, YOLOv8n-seg and YOLOv8n-pose.
!!! Example
@ -93,6 +97,10 @@ As can be seen in the above usage, tracking is available for all Detect, Segment
## Configuration
!!! Warning "Tracker Threshold Information"
If object confidence score will be low, i.e lower than [`track_high_thresh`](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/trackers/bytetrack.yaml#L5), then there will be no tracks successfully returned and updated.
### Tracking Arguments
Tracking configuration shares properties with Predict mode, such as `conf`, `iou`, and `show`. For further configurations, refer to the [Predict](../modes/predict.md#inference-arguments) model page.

View file

@ -15,10 +15,6 @@ keywords: Ultralytics, YOLO, YOLODataset, SemanticDataset, data handling, data m
<br><br>
## ::: ultralytics.data.dataset.ClassificationDataset
<br><br>
## ::: ultralytics.data.dataset.YOLOMultiModalDataset
<br><br>
@ -34,3 +30,7 @@ keywords: Ultralytics, YOLO, YOLODataset, SemanticDataset, data handling, data m
## ::: ultralytics.data.dataset.SemanticDataset
<br><br>
## ::: ultralytics.data.dataset.ClassificationDataset
<br><br>

View file

@ -63,6 +63,10 @@ keywords: Ultralytics, Utils, utilitarian functions, colorstr, yaml_save, set_lo
<br><br>
## ::: ultralytics.utils.read_device_model
<br><br>
## ::: ultralytics.utils.is_ubuntu
<br><br>
@ -83,6 +87,14 @@ keywords: Ultralytics, Utils, utilitarian functions, colorstr, yaml_save, set_lo
<br><br>
## ::: ultralytics.utils.is_raspberrypi
<br><br>
## ::: ultralytics.utils.is_jetson
<br><br>
## ::: ultralytics.utils.is_online
<br><br>
@ -103,11 +115,11 @@ keywords: Ultralytics, Utils, utilitarian functions, colorstr, yaml_save, set_lo
<br><br>
## ::: ultralytics.utils.is_git_dir
## ::: ultralytics.utils.get_git_dir
<br><br>
## ::: ultralytics.utils.get_git_dir
## ::: ultralytics.utils.is_git_dir
<br><br>

View file

@ -11,6 +11,10 @@ keywords: Ultralytics, ProfileModels, benchmarks, model profiling, performance o
<br><br>
## ::: ultralytics.utils.benchmarks.RF100Benchmark
<br><br>
## ::: ultralytics.utils.benchmarks.ProfileModels
<br><br>

View file

@ -18,16 +18,28 @@ The output of an oriented object detector is a set of rotated bounding boxes tha
YOLOv8 OBB models use the `-obb` suffix, i.e. `yolov8n-obb.pt` and are pretrained on [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml).
<p align="center">
<br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Z7Z9pHF8wJc"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Object Detection using Ultralytics YOLOv8 Oriented Bounding Boxes (YOLOv8-OBB)
</p>
<table>
<tr>
<td align="center">
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Z7Z9pHF8wJc"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Object Detection using Ultralytics YOLOv8 Oriented Bounding Boxes (YOLOv8-OBB)
</td>
<td align="center">
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/uZ7SymQfqKI"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Object Detection with YOLOv8-OBB using Ultralytics HUB
</td>
</tr>
</table>
## Visual Samples