ultralytics 8.2.50 new Streamlit live inference Solution (#14210)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Muhammad Rizwan Munawar <muhammadrizwanmunawar123@gmail.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: RizwanMunawar <chr043416@gmail.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
5f0fd710a4
commit
26a664f636
20 changed files with 350 additions and 22 deletions
|
|
@ -686,7 +686,7 @@ class RandomFlip:
|
|||
flip_idx (array-like, optional): Index mapping for flipping keypoints, if any.
|
||||
"""
|
||||
assert direction in {"horizontal", "vertical"}, f"Support direction `horizontal` or `vertical`, got {direction}"
|
||||
assert 0 <= p <= 1.0
|
||||
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
|
||||
|
||||
self.p = p
|
||||
self.direction = direction
|
||||
|
|
@ -1210,7 +1210,7 @@ def classify_transforms(
|
|||
import torchvision.transforms as T # scope for faster 'import ultralytics'
|
||||
|
||||
if isinstance(size, (tuple, list)):
|
||||
assert len(size) == 2
|
||||
assert len(size) == 2, f"'size' tuples must be length 2, not length {len(size)}"
|
||||
scale_size = tuple(math.floor(x / crop_fraction) for x in size)
|
||||
else:
|
||||
scale_size = math.floor(size / crop_fraction)
|
||||
|
|
@ -1288,7 +1288,7 @@ def classify_augmentations(
|
|||
secondary_tfl = []
|
||||
disable_color_jitter = False
|
||||
if auto_augment:
|
||||
assert isinstance(auto_augment, str)
|
||||
assert isinstance(auto_augment, str), f"Provided argument should be string, but got type {type(auto_augment)}"
|
||||
# color jitter is typically disabled if AA/RA on,
|
||||
# this allows override without breaking old hparm cfgs
|
||||
disable_color_jitter = not force_color_jitter
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue