Update HUB SDK Docs (#13309)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-06-02 21:39:34 +02:00 committed by GitHub
parent 064e2fd282
commit 2684bcdc7d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
307 changed files with 774 additions and 747 deletions

View file

@ -1,7 +1,7 @@
---
comments: true
description: Comprehensive Guide to Understanding and Creating Line Graphs, Bar Plots, and Pie Charts
keywords: Analytics, Data Visualization, Line Graphs, Bar Plots, Pie Charts, Quickstart Guide, Data Analysis, Python, Visualization Tools
description: Learn to create line graphs, bar plots, and pie charts using Python with guided instructions and code snippets. Maximize your data visualization skills!.
keywords: Ultralytics, YOLOv8, data visualization, line graphs, bar plots, pie charts, Python, analytics, tutorial, guide
---
# Analytics using Ultralytics YOLOv8 📊

View file

@ -1,7 +1,7 @@
---
comments: true
description: Step-by-step Quickstart Guide to Running YOLOv8 Object Detection Models on AzureML for Fast Prototyping and Testing
keywords: Ultralytics, YOLOv8, Object Detection, Azure Machine Learning, Quickstart Guide, Prototype, Compute Instance, Terminal, Notebook, IPython Kernel, CLI, Python SDK
description: Learn how to run YOLOv8 on AzureML. Quickstart instructions for terminal and notebooks to harness Azure's cloud computing for efficient model training.
keywords: YOLOv8, AzureML, machine learning, cloud computing, quickstart, terminal, notebooks, model training, Python SDK, AI, Ultralytics
---
# YOLOv8 🚀 on AzureML

View file

@ -1,7 +1,7 @@
---
comments: true
description: Comprehensive guide to setting up and using Ultralytics YOLO models in a Conda environment. Learn how to install the package, manage dependencies, and get started with object detection projects.
keywords: Ultralytics, YOLO, Conda, environment setup, object detection, package installation, deep learning, machine learning, guide
description: Learn to set up a Conda environment for Ultralytics projects. Follow our comprehensive guide for easy installation and initialization.
keywords: Ultralytics, Conda, setup, installation, environment, guide, machine learning, data science
---
# Conda Quickstart Guide for Ultralytics

View file

@ -1,7 +1,7 @@
---
comments: true
description: Guide on how to use Ultralytics with a Coral Edge TPU on a Raspberry Pi for increased inference performance.
keywords: Ultralytics, YOLOv8, Object Detection, Coral, Edge TPU, Raspberry Pi, embedded, edge compute, sbc, accelerator, mobile
description: Learn how to boost your Raspberry Pi's ML performance using Coral Edge TPU with Ultralytics YOLOv8. Follow our detailed setup and installation guide.
keywords: Coral Edge TPU, Raspberry Pi, YOLOv8, Ultralytics, TensorFlow Lite, ML inference, machine learning, AI, installation guide, setup tutorial
---
# Coral Edge TPU on a Raspberry Pi with Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: A detailed guide on defining the problem and setting objectives in a computer vision project, highlighting the importance of clear problem statements and measurable objectives.
keywords: Computer Vision Project, Defining Problems, Setting Objectives, SMART Objectives, Project Scope, How Does Computer Vision Work, Computer Vision Techniques, Computer Vision Basics
description: Learn how to define clear goals and objectives for your computer vision project with our practical guide. Includes tips on problem statements, measurable objectives, and key decisions.
keywords: computer vision, project planning, problem statement, measurable objectives, dataset preparation, model selection, YOLOv8, Ultralytics
---
# A Practical Guide for Defining Your Computer Vision Project

View file

@ -1,7 +1,7 @@
---
comments: true
description: Distance Calculation Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Distance Calculation, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
description: Learn how to calculate distances between objects using Ultralytics YOLOv8 for accurate spatial positioning and scene understanding.
keywords: Ultralytics, YOLOv8, distance calculation, computer vision, object tracking, spatial positioning
---
# Distance Calculation using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: Complete guide to setting up and using Ultralytics YOLO models with Docker. Learn how to install Docker, manage GPU support, and run YOLO models in isolated containers.
keywords: Ultralytics, YOLO, Docker, GPU, containerization, object detection, package installation, deep learning, machine learning, guide
description: Learn to effortlessly set up Ultralytics in Docker, from installation to running with CPU/GPU support. Follow our comprehensive guide for seamless container experience.
keywords: Ultralytics, Docker, Quickstart Guide, CPU support, GPU support, NVIDIA Docker, container setup, Docker environment, Docker Hub, Ultralytics projects
---
# Docker Quickstart Guide for Ultralytics

View file

@ -1,7 +1,7 @@
---
comments: true
description: Advanced Data Visualization with Ultralytics YOLOv8 Heatmaps
keywords: Ultralytics, YOLOv8, Advanced Data Visualization, Heatmap Technology, Object Detection and Tracking, Jupyter Notebook, Python SDK, Command Line Interface
description: Transform complex data into insightful heatmaps using Ultralytics YOLOv8. Discover patterns, trends, and anomalies with vibrant visualizations.
keywords: Ultralytics, YOLOv8, heatmaps, data visualization, data analysis, complex data, patterns, trends, anomalies
---
# Advanced Data Visualization: Heatmaps using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: Dive into hyperparameter tuning in Ultralytics YOLO models. Learn how to optimize performance using the Tuner class and genetic evolution.
keywords: Ultralytics, YOLO, Hyperparameter Tuning, Tuner Class, Genetic Evolution, Optimization
description: Master hyperparameter tuning for Ultralytics YOLO to optimize model performance with our comprehensive guide. Elevate your machine learning models today!.
keywords: Ultralytics YOLO, hyperparameter tuning, machine learning, model optimization, genetic algorithms, learning rate, batch size, epochs
---
# Ultralytics YOLO Hyperparameter Tuning Guide

View file

@ -1,7 +1,7 @@
---
comments: true
description: In-depth exploration of Ultralytics' YOLO. Learn about the YOLO object detection model, how to train it on custom data, multi-GPU training, exporting, predicting, deploying, and more.
keywords: Ultralytics, YOLO, Deep Learning, Object detection, PyTorch, Tutorial, Multi-GPU training, Custom data training, SAHI, Tiled Inference
description: Master YOLO with Ultralytics tutorials covering training, deployment and optimization. Find solutions, improve metrics, and deploy with ease!.
keywords: Ultralytics, YOLO, tutorials, guides, object detection, deep learning, PyTorch, training, deployment, optimization, computer vision
---
# Comprehensive Tutorials to Ultralytics YOLO

View file

@ -1,7 +1,7 @@
---
comments: true
description: Instance Segmentation with Object Tracking using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Instance Segmentation, Object Detection, Object Tracking, Bounding Box, Computer Vision, Notebook, IPython Kernel, CLI, Python SDK
description: Master instance segmentation and tracking with Ultralytics YOLOv8. Learn techniques for precise object identification and tracking.
keywords: instance segmentation, tracking, YOLOv8, Ultralytics, object detection, machine learning, computer vision, python
---
# Instance Segmentation and Tracking using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: A concise guide on isolating segmented objects using Ultralytics.
keywords: Ultralytics, YOLO, segmentation, Python, object detection, inference, dataset, prediction, instance segmentation, contours, binary mask, object mask, image processing
description: Learn to extract isolated objects from inference results using Ultralytics Predict Mode. Step-by-step guide for segmentation object isolation.
keywords: Ultralytics, segmentation, object isolation, Predict Mode, YOLOv8, machine learning, object detection, binary mask, image processing
---
# Isolating Segmentation Objects

View file

@ -1,7 +1,7 @@
---
comments: true
description: An in-depth guide demonstrating the implementation of K-Fold Cross Validation with the Ultralytics ecosystem for object detection datasets, leveraging Python, YOLO, and sklearn.
keywords: K-Fold cross validation, Ultralytics, YOLO detection format, Python, sklearn, object detection
description: Learn to implement K-Fold Cross Validation for object detection datasets using Ultralytics YOLO. Improve your model's reliability and robustness.
keywords: Ultralytics, YOLO, K-Fold Cross Validation, object detection, sklearn, pandas, PyYaml, machine learning, dataset split
---
# K-Fold Cross Validation with Ultralytics

View file

@ -1,7 +1,7 @@
---
comments: true
description: A guide to help determine which deployment option to choose for your YOLOv8 model, including essential considerations.
keywords: YOLOv8, Deployment, PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow, Export
description: Learn about YOLOv8's diverse deployment options to maximize your model's performance. Explore PyTorch, TensorRT, OpenVINO, TF Lite, and more!.
keywords: YOLOv8, deployment options, export formats, PyTorch, TensorRT, OpenVINO, TF Lite, machine learning, model deployment
---
# Understanding YOLOv8's Deployment Options

View file

@ -1,7 +1,7 @@
---
comments: true
description: Quick start guide to setting up YOLOv8 on a NVIDIA Jetson device with comprehensive benchmarks.
keywords: Ultralytics, YOLO, NVIDIA, Jetson, TensorRT, quick start guide, hardware setup, machine learning, AI
description: Learn to deploy Ultralytics YOLOv8 on NVIDIA Jetson devices with our detailed guide. Explore performance benchmarks and maximize AI capabilities.
keywords: Ultralytics, YOLOv8, NVIDIA Jetson, JetPack, AI deployment, performance benchmarks, embedded systems, deep learning, TensorRT, computer vision
---
# Quick Start Guide: NVIDIA Jetson with Ultralytics YOLOv8

View file

@ -1,7 +1,7 @@
---
comments: true
description: Learn to blur objects using Ultralytics YOLOv8 for privacy in images and videos.
keywords: Ultralytics, YOLOv8, Object Detection, Object Blurring, Privacy Protection, Image Processing, Video Analysis, AI, Machine Learning
description: Learn how to use Ultralytics YOLOv8 for real-time object blurring to enhance privacy and focus in your images and videos.
keywords: YOLOv8, object blurring, real-time processing, privacy protection, image manipulation, video editing, Ultralytics
---
# Object Blurring using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: Object Counting Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
description: Learn to accurately identify and count objects in real-time using Ultralytics YOLOv8 for applications like crowd analysis and surveillance.
keywords: object counting, YOLOv8, Ultralytics, real-time object detection, AI, deep learning, object tracking, crowd analysis, surveillance, resource optimization
---
# Object Counting using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: Learn how to isolate and extract specific objects from images and videos using YOLOv8 object cropping.
keywords: Ultralytics, YOLOv8, Object Detection, Object Cropping, Image Analysis, Video Processing, Data Extraction, Python
description: Learn how to crop and extract objects using Ultralytics YOLOv8 for focused analysis, reduced data volume, and enhanced precision.
keywords: Ultralytics, YOLOv8, object cropping, object detection, image processing, video analysis, AI, machine learning
---
# Object Cropping using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: Learn how to optimize Ultralytics YOLOv8 models with Intel OpenVINO for maximum performance. Discover expert techniques to minimize latency and maximize throughput for real-time object detection applications.
keywords: Ultralytics, YOLOv8, OpenVINO, optimization, latency, throughput, inference, object detection, deep learning, machine learning, guide, Intel
description: Discover how to enhance Ultralytics YOLO model performance using Intel's OpenVINO toolkit. Boost latency and throughput efficiently.
keywords: Ultralytics YOLO, OpenVINO optimization, deep learning, model inference, throughput optimization, latency optimization, AI deployment, Intel's OpenVINO, performance tuning
---
# Optimizing OpenVINO Inference for Ultralytics YOLO Models: A Comprehensive Guide

View file

@ -1,7 +1,7 @@
---
comments: true
description: Parking Management System Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Parking lots, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
description: Optimize parking spaces and enhance safety with Ultralytics YOLOv8. Explore real-time vehicle detection and smart parking solutions.
keywords: parking management, YOLOv8, Ultralytics, vehicle detection, real-time tracking, parking lot optimization, smart parking
---
# Parking Management using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: Data preprocessing and augmentation help prepare datasets for model training in computer vision projects. Learn about various techniques for preprocessing annotated data.
keywords: What is Data Preprocessing, Data Preprocessing Techniques, What is Data Augmentation, Data Augmentation Methods, Benefits of Data Augmentation
description: Learn essential data preprocessing techniques for annotated computer vision data, including resizing, normalizing, augmenting, and splitting datasets for optimal model training.
keywords: data preprocessing, computer vision, image resizing, normalization, data augmentation, training dataset, validation dataset, test dataset, YOLOv8
---
# Data Preprocessing Techniques for Annotated Computer Vision Data

View file

@ -1,7 +1,7 @@
---
comments: true
description: Queue Management Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Queue Management, Object Counting, Object Tracking, Object Detection, Notebook, IPython Kernel, CLI, Python SDK
description: Learn how to manage and optimize queues using Ultralytics YOLOv8 to reduce wait times and increase efficiency in various real-world applications.
keywords: queue management, YOLOv8, Ultralytics, reduce wait times, efficiency, customer satisfaction, retail, airports, healthcare, banks
---
# Queue Management using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: Quick start guide to setting up YOLOv8 on a Raspberry Pi with comprehensive benchmarks.
keywords: Ultralytics, YOLO, Raspberry Pi, Pi Camera, rpicam, quick start guide, Raspberry Pi 4 vs Raspberry Pi 5, YOLO on Raspberry Pi, hardware setup, machine learning, AI
description: Learn how to deploy Ultralytics YOLOv8 on Raspberry Pi with our comprehensive guide. Get performance benchmarks, setup instructions, and best practices.
keywords: Ultralytics, YOLOv8, Raspberry Pi, setup, guide, benchmarks, computer vision, object detection, NCNN, Docker, camera modules
---
# Quick Start Guide: Raspberry Pi with Ultralytics YOLOv8

View file

@ -1,7 +1,7 @@
---
comments: true
description: Object Counting in Different Region using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
description: Learn how to use Ultralytics YOLOv8 for precise object counting in specified regions, enhancing efficiency across various applications.
keywords: object counting, regions, YOLOv8, computer vision, Ultralytics, efficiency, accuracy, automation, real-time, applications, surveillance, monitoring
---
# Object Counting in Different Regions using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: A comprehensive guide on how to use YOLOv8 with SAHI for standard and sliced inference in object detection tasks.
keywords: YOLOv8, SAHI, Sliced Inference, Object Detection, Ultralytics, Large Scale Image Analysis, High-Resolution Imagery
description: Learn how to implement YOLOv8 with SAHI for sliced inference. Optimize memory usage and enhance detection accuracy for large-scale applications.
keywords: YOLOv8, SAHI, Sliced Inference, Object Detection, Ultralytics, High-resolution Images, Computational Efficiency, Integration Guide
---
# Ultralytics Docs: Using YOLOv8 with SAHI for Sliced Inference

View file

@ -1,7 +1,7 @@
---
comments: true
description: Security Alarm System Project Using Ultralytics YOLOv8. Learn How to implement a Security Alarm System Using ultralytics YOLOv8
keywords: Object Detection, Security Alarm, Object Tracking, YOLOv8, Computer Vision Projects
description: Enhance your security with real-time object detection using Ultralytics YOLOv8. Reduce false positives and integrate seamlessly with existing systems.
keywords: YOLOv8, Security Alarm System, real-time object detection, Ultralytics, computer vision, integration, false positives
---
# Security Alarm System Project Using Ultralytics YOLOv8

View file

@ -1,7 +1,7 @@
---
comments: true
description: Speed Estimation Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Speed Estimation, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
description: Learn how to estimate object speed using Ultralytics YOLOv8 for applications in traffic control, autonomous navigation, and surveillance.
keywords: Ultralytics YOLOv8, speed estimation, object tracking, computer vision, traffic control, autonomous navigation, surveillance, security
---
# Speed Estimation using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: A guide that walks through the key steps involved in a computer vision project, including steps like defining the problem, data collection, model training, and deployment.
keywords: Computer Vision Steps, How Does Computer Vision Work, Computer Vision Techniques, Computer Vision Basics, Model Deployment, Data Annotation, Model Evaluation
description: Discover essential steps for launching a successful computer vision project, from defining goals to model deployment and maintenance. Boost your AI capabilities now!.
keywords: Computer Vision, AI, Object Detection, Image Classification, Instance Segmentation, Data Annotation, Model Training, Model Evaluation, Model Deployment
---
# Understanding the Key Steps in a Computer Vision Project

View file

@ -1,7 +1,7 @@
---
comments: true
description: A step-by-step guide on integrating Ultralytics YOLOv8 with Triton Inference Server for scalable and high-performance deep learning inference deployments.
keywords: YOLOv8, Triton Inference Server, ONNX, Deep Learning Deployment, Scalable Inference, Ultralytics, NVIDIA, Object Detection, Cloud Inference
description: Learn how to integrate Ultralytics YOLOv8 with NVIDIA Triton Inference Server for scalable, high-performance AI model deployment.
keywords: Triton Inference Server, YOLOv8, Ultralytics, NVIDIA, deep learning, AI model deployment, ONNX, scalable inference
---
# Triton Inference Server with Ultralytics YOLOv8

View file

@ -1,7 +1,7 @@
---
comments: true
description: Learn how to view image results inside a compatible VSCode terminal.
keywords: YOLOv8, VSCode, Terminal, Remote Development, Ultralytics, SSH, Object Detection, Inference, Results, Remote Tunnel, Images, Helpful, Productivity Hack
description: Learn how to visualize YOLO inference results directly in a VSCode terminal using sixel on Linux and MacOS.
keywords: YOLO, inference results, VSCode terminal, sixel, display images, Linux, MacOS
---
# Viewing Inference Results in a Terminal

View file

@ -1,7 +1,7 @@
---
comments: true
description: VisionEye View Object Mapping using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Tracking, IDetection, VisionEye, Computer Vision, Notebook, IPython Kernel, CLI, Python SDK
description: Discover VisionEye's object mapping and tracking powered by Ultralytics YOLOv8. Simulate human eye precision, track objects, and calculate distances effortlessly.
keywords: VisionEye, YOLOv8, Ultralytics, object mapping, object tracking, distance calculation, computer vision, AI, machine learning, Python, tutorial
---
# VisionEye View Object Mapping using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: Workouts Monitoring Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Pose Estimation, PushUps, PullUps, Ab workouts, Notebook, IPython Kernel, CLI, Python SDK
description: Optimize your fitness routine with real-time workouts monitoring using Ultralytics YOLOv8. Track and improve your exercise form and performance.
keywords: workouts monitoring, Ultralytics YOLOv8, pose estimation, fitness tracking, exercise assessment, real-time feedback, exercise form, performance metrics
---
# Workouts Monitoring using Ultralytics YOLOv8 🚀

View file

@ -1,7 +1,7 @@
---
comments: true
description: A comprehensive guide to troubleshooting common issues encountered while working with YOLOv8 in the Ultralytics ecosystem.
keywords: Troubleshooting, Ultralytics, YOLOv8, Installation Errors, Training Data, Model Performance, Hyperparameter Tuning, Deployment
description: Comprehensive guide to troubleshoot common YOLOv8 issues, from installation errors to model training challenges. Enhance your Ultralytics projects with our expert tips.
keywords: YOLO, YOLOv8, troubleshooting, installation errors, model training, GPU issues, Ultralytics, AI, computer vision, deep learning, Python, CUDA, PyTorch, debugging
---
# Troubleshooting Common YOLO Issues

View file

@ -1,7 +1,7 @@
---
comments: true
description: A comprehensive guide on various performance metrics related to YOLOv8, their significance, and how to interpret them.
keywords: YOLOv8, Performance metrics, Object detection, Intersection over Union (IoU), Average Precision (AP), Mean Average Precision (mAP), Precision, Recall, Validation mode, Ultralytics
description: Explore essential YOLOv8 performance metrics like mAP, IoU, F1 Score, Precision, and Recall. Learn how to calculate and interpret them for model evaluation.
keywords: YOLOv8 performance metrics, mAP, IoU, F1 Score, Precision, Recall, object detection, Ultralytics
---
# Performance Metrics Deep Dive

View file

@ -1,7 +1,7 @@
---
comments: true
description: This guide provides best practices for performing thread-safe inference with YOLO models, ensuring reliable and concurrent predictions in multi-threaded applications.
keywords: thread-safe, YOLO inference, multi-threading, concurrent predictions, YOLO models, Ultralytics, Python threading, safe YOLO usage, AI concurrency
description: Learn how to ensure thread-safe YOLO model inference in Python. Avoid race conditions and run your multi-threaded tasks reliably with best practices.
keywords: YOLO models, thread-safe, Python threading, model inference, concurrency, race conditions, multi-threaded, parallelism, Python GIL
---
# Thread-Safe Inference with YOLO Models