ultralytics 8.2.103 Windows Benchmarks CI (#16523)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
54eccccd11
commit
2530755210
3 changed files with 105 additions and 68 deletions
2
.github/workflows/ci.yaml
vendored
2
.github/workflows/ci.yaml
vendored
|
|
@ -98,7 +98,7 @@ jobs:
|
|||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ubuntu-latest, macos-14]
|
||||
os: [ubuntu-latest, windows-latest, macos-14]
|
||||
python-version: ["3.11"]
|
||||
model: [yolov8n]
|
||||
steps:
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = "8.2.102"
|
||||
__version__ = "8.2.103"
|
||||
|
||||
|
||||
import os
|
||||
|
|
|
|||
|
|
@ -43,36 +43,40 @@ from ultralytics.utils import ARM64, ASSETS, IS_JETSON, IS_RASPBERRYPI, LINUX, L
|
|||
from ultralytics.utils.checks import IS_PYTHON_3_12, check_requirements, check_yolo
|
||||
from ultralytics.utils.downloads import safe_download
|
||||
from ultralytics.utils.files import file_size
|
||||
from ultralytics.utils.torch_utils import select_device
|
||||
from ultralytics.utils.torch_utils import get_cpu_info, select_device
|
||||
|
||||
|
||||
def benchmark(
|
||||
model=WEIGHTS_DIR / "yolov8n.pt", data=None, imgsz=160, half=False, int8=False, device="cpu", verbose=False
|
||||
model=WEIGHTS_DIR / "yolov8n.pt",
|
||||
data=None,
|
||||
imgsz=160,
|
||||
half=False,
|
||||
int8=False,
|
||||
device="cpu",
|
||||
verbose=False,
|
||||
eps=1e-3,
|
||||
):
|
||||
"""
|
||||
Benchmark a YOLO model across different formats for speed and accuracy.
|
||||
|
||||
Args:
|
||||
model (str | Path | optional): Path to the model file or directory. Default is
|
||||
Path(SETTINGS['weights_dir']) / 'yolov8n.pt'.
|
||||
data (str, optional): Dataset to evaluate on, inherited from TASK2DATA if not passed. Default is None.
|
||||
imgsz (int, optional): Image size for the benchmark. Default is 160.
|
||||
half (bool, optional): Use half-precision for the model if True. Default is False.
|
||||
int8 (bool, optional): Use int8-precision for the model if True. Default is False.
|
||||
device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'.
|
||||
verbose (bool | float | optional): If True or a float, assert benchmarks pass with given metric.
|
||||
Default is False.
|
||||
model (str | Path): Path to the model file or directory.
|
||||
data (str | None): Dataset to evaluate on, inherited from TASK2DATA if not passed.
|
||||
imgsz (int): Image size for the benchmark.
|
||||
half (bool): Use half-precision for the model if True.
|
||||
int8 (bool): Use int8-precision for the model if True.
|
||||
device (str): Device to run the benchmark on, either 'cpu' or 'cuda'.
|
||||
verbose (bool | float): If True or a float, assert benchmarks pass with given metric.
|
||||
eps (float): Epsilon value for divide by zero prevention.
|
||||
|
||||
Returns:
|
||||
df (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size,
|
||||
metric, and inference time.
|
||||
(pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size, metric,
|
||||
and inference time.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.utils.benchmarks import benchmark
|
||||
|
||||
benchmark(model="yolov8n.pt", imgsz=640)
|
||||
```
|
||||
Examples:
|
||||
Benchmark a YOLO model with default settings:
|
||||
>>> from ultralytics.utils.benchmarks import benchmark
|
||||
>>> benchmark(model="yolov8n.pt", imgsz=640)
|
||||
"""
|
||||
import pandas as pd # scope for faster 'import ultralytics'
|
||||
|
||||
|
|
@ -106,6 +110,7 @@ def benchmark(
|
|||
if i in {11}: # Paddle
|
||||
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 Paddle exports not supported yet"
|
||||
assert not is_end2end, "End-to-end models not supported by PaddlePaddle yet"
|
||||
assert LINUX or MACOS, "Windows Paddle exports not supported yet"
|
||||
if i in {12}: # NCNN
|
||||
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 NCNN exports not supported yet"
|
||||
if "cpu" in device.type:
|
||||
|
|
@ -138,7 +143,7 @@ def benchmark(
|
|||
data=data, batch=1, imgsz=imgsz, plots=False, device=device, half=half, int8=int8, verbose=False
|
||||
)
|
||||
metric, speed = results.results_dict[key], results.speed["inference"]
|
||||
fps = round((1000 / speed), 2) # frames per second
|
||||
fps = round(1000 / (speed + eps), 2) # frames per second
|
||||
y.append([name, "✅", round(file_size(filename), 1), round(metric, 4), round(speed, 2), fps])
|
||||
except Exception as e:
|
||||
if verbose:
|
||||
|
|
@ -165,10 +170,10 @@ def benchmark(
|
|||
|
||||
|
||||
class RF100Benchmark:
|
||||
"""Benchmark YOLO model performance across formats for speed and accuracy."""
|
||||
"""Benchmark YOLO model performance across various formats for speed and accuracy."""
|
||||
|
||||
def __init__(self):
|
||||
"""Function for initialization of RF100Benchmark."""
|
||||
"""Initialize the RF100Benchmark class for benchmarking YOLO model performance across various formats."""
|
||||
self.ds_names = []
|
||||
self.ds_cfg_list = []
|
||||
self.rf = None
|
||||
|
|
@ -180,6 +185,11 @@ class RF100Benchmark:
|
|||
|
||||
Args:
|
||||
api_key (str): The API key.
|
||||
|
||||
Examples:
|
||||
Set the Roboflow API key for accessing datasets:
|
||||
>>> benchmark = RF100Benchmark()
|
||||
>>> benchmark.set_key("your_roboflow_api_key")
|
||||
"""
|
||||
check_requirements("roboflow")
|
||||
from roboflow import Roboflow
|
||||
|
|
@ -188,10 +198,15 @@ class RF100Benchmark:
|
|||
|
||||
def parse_dataset(self, ds_link_txt="datasets_links.txt"):
|
||||
"""
|
||||
Parse dataset links and downloads datasets.
|
||||
Parse dataset links and download datasets.
|
||||
|
||||
Args:
|
||||
ds_link_txt (str): Path to dataset_links file.
|
||||
ds_link_txt (str): Path to the file containing dataset links.
|
||||
|
||||
Examples:
|
||||
>>> benchmark = RF100Benchmark()
|
||||
>>> benchmark.set_key("api_key")
|
||||
>>> benchmark.parse_dataset("datasets_links.txt")
|
||||
"""
|
||||
(shutil.rmtree("rf-100"), os.mkdir("rf-100")) if os.path.exists("rf-100") else os.mkdir("rf-100")
|
||||
os.chdir("rf-100")
|
||||
|
|
@ -217,10 +232,13 @@ class RF100Benchmark:
|
|||
@staticmethod
|
||||
def fix_yaml(path):
|
||||
"""
|
||||
Function to fix YAML train and val path.
|
||||
Fixes the train and validation paths in a given YAML file.
|
||||
|
||||
Args:
|
||||
path (str): YAML file path.
|
||||
path (str): Path to the YAML file to be fixed.
|
||||
|
||||
Examples:
|
||||
>>> RF100Benchmark.fix_yaml("path/to/data.yaml")
|
||||
"""
|
||||
with open(path) as file:
|
||||
yaml_data = yaml.safe_load(file)
|
||||
|
|
@ -231,13 +249,21 @@ class RF100Benchmark:
|
|||
|
||||
def evaluate(self, yaml_path, val_log_file, eval_log_file, list_ind):
|
||||
"""
|
||||
Model evaluation on validation results.
|
||||
Evaluate model performance on validation results.
|
||||
|
||||
Args:
|
||||
yaml_path (str): YAML file path.
|
||||
val_log_file (str): val_log_file path.
|
||||
eval_log_file (str): eval_log_file path.
|
||||
list_ind (int): Index for current dataset.
|
||||
yaml_path (str): Path to the YAML configuration file.
|
||||
val_log_file (str): Path to the validation log file.
|
||||
eval_log_file (str): Path to the evaluation log file.
|
||||
list_ind (int): Index of the current dataset in the list.
|
||||
|
||||
Returns:
|
||||
(float): The mean average precision (mAP) value for the evaluated model.
|
||||
|
||||
Examples:
|
||||
Evaluate a model on a specific dataset
|
||||
>>> benchmark = RF100Benchmark()
|
||||
>>> benchmark.evaluate("path/to/data.yaml", "path/to/val_log.txt", "path/to/eval_log.txt", 0)
|
||||
"""
|
||||
skip_symbols = ["🚀", "⚠️", "💡", "❌"]
|
||||
with open(yaml_path) as stream:
|
||||
|
|
@ -285,21 +311,23 @@ class ProfileModels:
|
|||
This class profiles the performance of different models, returning results such as model speed and FLOPs.
|
||||
|
||||
Attributes:
|
||||
paths (list): Paths of the models to profile.
|
||||
num_timed_runs (int): Number of timed runs for the profiling. Default is 100.
|
||||
num_warmup_runs (int): Number of warmup runs before profiling. Default is 10.
|
||||
min_time (float): Minimum number of seconds to profile for. Default is 60.
|
||||
imgsz (int): Image size used in the models. Default is 640.
|
||||
paths (List[str]): Paths of the models to profile.
|
||||
num_timed_runs (int): Number of timed runs for the profiling.
|
||||
num_warmup_runs (int): Number of warmup runs before profiling.
|
||||
min_time (float): Minimum number of seconds to profile for.
|
||||
imgsz (int): Image size used in the models.
|
||||
half (bool): Flag to indicate whether to use FP16 half-precision for TensorRT profiling.
|
||||
trt (bool): Flag to indicate whether to profile using TensorRT.
|
||||
device (torch.device): Device used for profiling.
|
||||
|
||||
Methods:
|
||||
profile(): Profiles the models and prints the result.
|
||||
profile: Profiles the models and prints the result.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.utils.benchmarks import ProfileModels
|
||||
|
||||
ProfileModels(["yolov8n.yaml", "yolov8s.yaml"], imgsz=640).profile()
|
||||
```
|
||||
Examples:
|
||||
Profile models and print results
|
||||
>>> from ultralytics.utils.benchmarks import ProfileModels
|
||||
>>> profiler = ProfileModels(["yolov8n.yaml", "yolov8s.yaml"], imgsz=640)
|
||||
>>> profiler.profile()
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
|
|
@ -317,17 +345,23 @@ class ProfileModels:
|
|||
Initialize the ProfileModels class for profiling models.
|
||||
|
||||
Args:
|
||||
paths (list): List of paths of the models to be profiled.
|
||||
num_timed_runs (int, optional): Number of timed runs for the profiling. Default is 100.
|
||||
num_warmup_runs (int, optional): Number of warmup runs before the actual profiling starts. Default is 10.
|
||||
min_time (float, optional): Minimum time in seconds for profiling a model. Default is 60.
|
||||
imgsz (int, optional): Size of the image used during profiling. Default is 640.
|
||||
half (bool, optional): Flag to indicate whether to use FP16 half-precision for TensorRT profiling.
|
||||
trt (bool, optional): Flag to indicate whether to profile using TensorRT. Default is True.
|
||||
device (torch.device, optional): Device used for profiling. If None, it is determined automatically.
|
||||
paths (List[str]): List of paths of the models to be profiled.
|
||||
num_timed_runs (int): Number of timed runs for the profiling.
|
||||
num_warmup_runs (int): Number of warmup runs before the actual profiling starts.
|
||||
min_time (float): Minimum time in seconds for profiling a model.
|
||||
imgsz (int): Size of the image used during profiling.
|
||||
half (bool): Flag to indicate whether to use FP16 half-precision for TensorRT profiling.
|
||||
trt (bool): Flag to indicate whether to profile using TensorRT.
|
||||
device (torch.device | None): Device used for profiling. If None, it is determined automatically.
|
||||
|
||||
Notes:
|
||||
FP16 'half' argument option removed for ONNX as slower on CPU than FP32
|
||||
FP16 'half' argument option removed for ONNX as slower on CPU than FP32.
|
||||
|
||||
Examples:
|
||||
Initialize and profile models
|
||||
>>> from ultralytics.utils.benchmarks import ProfileModels
|
||||
>>> profiler = ProfileModels(["yolov8n.yaml", "yolov8s.yaml"], imgsz=640)
|
||||
>>> profiler.profile()
|
||||
"""
|
||||
self.paths = paths
|
||||
self.num_timed_runs = num_timed_runs
|
||||
|
|
@ -339,7 +373,7 @@ class ProfileModels:
|
|||
self.device = device or torch.device(0 if torch.cuda.is_available() else "cpu")
|
||||
|
||||
def profile(self):
|
||||
"""Logs the benchmarking results of a model, checks metrics against floor and returns the results."""
|
||||
"""Profiles YOLO models for speed and accuracy across various formats including ONNX and TensorRT."""
|
||||
files = self.get_files()
|
||||
|
||||
if not files:
|
||||
|
|
@ -404,7 +438,7 @@ class ProfileModels:
|
|||
|
||||
@staticmethod
|
||||
def iterative_sigma_clipping(data, sigma=2, max_iters=3):
|
||||
"""Applies an iterative sigma clipping algorithm to the given data times number of iterations."""
|
||||
"""Applies iterative sigma clipping to data to remove outliers based on specified sigma and iteration count."""
|
||||
data = np.array(data)
|
||||
for _ in range(max_iters):
|
||||
mean, std = np.mean(data), np.std(data)
|
||||
|
|
@ -415,7 +449,7 @@ class ProfileModels:
|
|||
return data
|
||||
|
||||
def profile_tensorrt_model(self, engine_file: str, eps: float = 1e-3):
|
||||
"""Profiles the TensorRT model, measuring average run time and standard deviation among runs."""
|
||||
"""Profiles YOLO model performance with TensorRT, measuring average run time and standard deviation."""
|
||||
if not self.trt or not Path(engine_file).is_file():
|
||||
return 0.0, 0.0
|
||||
|
||||
|
|
@ -499,7 +533,7 @@ class ProfileModels:
|
|||
return np.mean(run_times), np.std(run_times)
|
||||
|
||||
def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
|
||||
"""Generates a formatted string for a table row that includes model performance and metric details."""
|
||||
"""Generates a table row string with model performance metrics including inference times and model details."""
|
||||
layers, params, gradients, flops = model_info
|
||||
return (
|
||||
f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± "
|
||||
|
|
@ -508,7 +542,7 @@ class ProfileModels:
|
|||
|
||||
@staticmethod
|
||||
def generate_results_dict(model_name, t_onnx, t_engine, model_info):
|
||||
"""Generates a dictionary of model details including name, parameters, GFLOPS and speed metrics."""
|
||||
"""Generates a dictionary of profiling results including model name, parameters, GFLOPs, and speed metrics."""
|
||||
layers, params, gradients, flops = model_info
|
||||
return {
|
||||
"model/name": model_name,
|
||||
|
|
@ -520,16 +554,19 @@ class ProfileModels:
|
|||
|
||||
@staticmethod
|
||||
def print_table(table_rows):
|
||||
"""Formats and prints a comparison table for different models with given statistics and performance data."""
|
||||
"""Prints a formatted table of model profiling results, including speed and accuracy metrics."""
|
||||
gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else "GPU"
|
||||
header = (
|
||||
f"| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | "
|
||||
f"Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |"
|
||||
)
|
||||
separator = (
|
||||
"|-------------|---------------------|--------------------|------------------------------|"
|
||||
"-----------------------------------|------------------|-----------------|"
|
||||
)
|
||||
headers = [
|
||||
"Model",
|
||||
"size<br><sup>(pixels)",
|
||||
"mAP<sup>val<br>50-95",
|
||||
f"Speed<br><sup>CPU ({get_cpu_info()}) ONNX<br>(ms)",
|
||||
f"Speed<br><sup>{gpu} TensorRT<br>(ms)",
|
||||
"params<br><sup>(M)",
|
||||
"FLOPs<br><sup>(B)",
|
||||
]
|
||||
header = "|" + "|".join(f" {h} " for h in headers) + "|"
|
||||
separator = "|" + "|".join("-" * (len(h) + 2) for h in headers) + "|"
|
||||
|
||||
print(f"\n\n{header}")
|
||||
print(separator)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue