ultralytics 8.0.89 SAM predict and auto-annotate (#2298)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Snyk bot <snyk-bot@snyk.io>
Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
Glenn Jocher 2023-04-28 00:36:50 +02:00 committed by GitHub
parent 3e118f6170
commit 243fc4b1fe
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
44 changed files with 2915 additions and 440 deletions

View file

@ -6,7 +6,7 @@ from pathlib import Path
import numpy as np
import torch
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.data import build_dataloader, build_yolo_dataset
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, colorstr, ops
@ -171,24 +171,40 @@ class DetectionValidator(BaseValidator):
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def build_dataset(self, img_path, mode='val', batch=None):
"""Build YOLO Dataset
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch_size (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=gs)
def get_dataloader(self, dataset_path, batch_size):
"""TODO: manage splits differently."""
# Calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return create_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size,
stride=gs,
hyp=vars(self.args),
cache=False,
pad=0.5,
rect=self.args.rect,
workers=self.args.workers,
prefix=colorstr(f'{self.args.mode}: '),
shuffle=False,
seed=self.args.seed)[0] if self.args.v5loader else \
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, data_info=self.data,
mode='val')[0]
if self.args.v5loader:
LOGGER.warning("WARNING ⚠️ 'v5loader' feature is deprecated and will be removed soon. You can train using "
'the default YOLOv8 dataloader instead, no argument is needed.')
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return create_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size,
stride=gs,
hyp=vars(self.args),
cache=False,
pad=0.5,
rect=self.args.rect,
workers=self.args.workers,
prefix=colorstr(f'{self.args.mode}: '),
shuffle=False,
seed=self.args.seed)[0]
dataset = self.build_dataset(dataset_path, batch=batch_size, mode='val')
dataloader = build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1)
return dataloader
def plot_val_samples(self, batch, ni):
"""Plot validation image samples."""