ultralytics 8.0.89 SAM predict and auto-annotate (#2298)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com> Co-authored-by: Paula Derrenger <107626595+pderrenger@users.noreply.github.com> Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Snyk bot <snyk-bot@snyk.io> Co-authored-by: Laughing-q <1185102784@qq.com>
This commit is contained in:
parent
3e118f6170
commit
243fc4b1fe
44 changed files with 2915 additions and 440 deletions
|
|
@ -31,11 +31,13 @@ import platform
|
|||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.data import load_inference_source
|
||||
from ultralytics.yolo.data.augment import classify_transforms
|
||||
from ultralytics.yolo.data.augment import LetterBox, classify_transforms
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, SETTINGS, callbacks, colorstr, ops
|
||||
from ultralytics.yolo.utils.checks import check_imgsz, check_imshow
|
||||
from ultralytics.yolo.utils.files import increment_path
|
||||
|
|
@ -106,9 +108,23 @@ class BasePredictor:
|
|||
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
def preprocess(self, img):
|
||||
"""Prepares input image before inference."""
|
||||
pass
|
||||
def preprocess(self, im):
|
||||
"""Prepares input image before inference.
|
||||
|
||||
Args:
|
||||
im (torch.Tensor | List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
|
||||
"""
|
||||
if not isinstance(im, torch.Tensor):
|
||||
auto = all(x.shape == im[0].shape for x in im) and self.model.pt
|
||||
im = np.stack([LetterBox(self.imgsz, auto=auto, stride=self.model.stride)(image=x) for x in im])
|
||||
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
|
||||
im = np.ascontiguousarray(im) # contiguous
|
||||
im = torch.from_numpy(im)
|
||||
# NOTE: assuming im with (b, 3, h, w) if it's a tensor
|
||||
img = im.to(self.device)
|
||||
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
||||
img /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
return img
|
||||
|
||||
def write_results(self, idx, results, batch):
|
||||
"""Write inference results to a file or directory."""
|
||||
|
|
@ -165,16 +181,9 @@ class BasePredictor:
|
|||
def setup_source(self, source):
|
||||
"""Sets up source and inference mode."""
|
||||
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
|
||||
if self.args.task == 'classify':
|
||||
transforms = getattr(self.model.model, 'transforms', classify_transforms(self.imgsz[0]))
|
||||
else: # predict, segment
|
||||
transforms = None
|
||||
self.dataset = load_inference_source(source=source,
|
||||
transforms=transforms,
|
||||
imgsz=self.imgsz,
|
||||
vid_stride=self.args.vid_stride,
|
||||
stride=self.model.stride,
|
||||
auto=self.model.pt)
|
||||
self.transforms = getattr(self.model.model, 'transforms', classify_transforms(
|
||||
self.imgsz[0])) if self.args.task == 'classify' else None
|
||||
self.dataset = load_inference_source(source=source, imgsz=self.imgsz, vid_stride=self.args.vid_stride)
|
||||
self.source_type = self.dataset.source_type
|
||||
if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams
|
||||
len(self.dataset) > 1000 or # images
|
||||
|
|
@ -207,14 +216,12 @@ class BasePredictor:
|
|||
for batch in self.dataset:
|
||||
self.run_callbacks('on_predict_batch_start')
|
||||
self.batch = batch
|
||||
path, im, im0s, vid_cap, s = batch
|
||||
path, im0s, vid_cap, s = batch
|
||||
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False
|
||||
|
||||
# Preprocess
|
||||
with self.dt[0]:
|
||||
im = self.preprocess(im)
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
im = self.preprocess(im0s)
|
||||
|
||||
# Inference
|
||||
with self.dt[1]:
|
||||
|
|
@ -226,7 +233,7 @@ class BasePredictor:
|
|||
self.run_callbacks('on_predict_postprocess_end')
|
||||
|
||||
# Visualize, save, write results
|
||||
n = len(im)
|
||||
n = len(im0s)
|
||||
for i in range(n):
|
||||
self.results[i].speed = {
|
||||
'preprocess': self.dt[0].dt * 1E3 / n,
|
||||
|
|
@ -234,8 +241,7 @@ class BasePredictor:
|
|||
'postprocess': self.dt[2].dt * 1E3 / n}
|
||||
if self.source_type.tensor: # skip write, show and plot operations if input is raw tensor
|
||||
continue
|
||||
p, im0 = (path[i], im0s[i].copy()) if self.source_type.webcam or self.source_type.from_img \
|
||||
else (path, im0s.copy())
|
||||
p, im0 = path[i], im0s[i].copy()
|
||||
p = Path(p)
|
||||
|
||||
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue