Clean up Docs pages (#13370)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
89108513c4
commit
22dec59b57
2 changed files with 0 additions and 8 deletions
|
|
@ -138,8 +138,6 @@ To auto-annotate your dataset using the Ultralytics framework, you can use the `
|
|||
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model="sam_b.pt")
|
||||
```
|
||||
|
||||
Certainly, here is the table updated with code snippets:
|
||||
|
||||
| Argument | Type | Description | Default |
|
||||
|--------------|-------------------------|-------------------------------------------------------------------------------------------------------------|----------------|
|
||||
| `data` | `str` | Path to a folder containing images to be annotated. | `None` |
|
||||
|
|
|
|||
|
|
@ -102,12 +102,6 @@ sudo docker run -it --ipc=host --gpus all $t # all GPUs
|
|||
sudo docker run -it --ipc=host --gpus '"device=2,3"' $t # specify GPUs
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
Certainly, you can include the following section in your Conda guide to inform users about speeding up installation using `libmamba`:
|
||||
|
||||
---
|
||||
|
||||
## Speeding Up Installation with Libmamba
|
||||
|
||||
If you're looking to [speed up the package installation](https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community) process in Conda, you can opt to use `libmamba`, a fast, cross-platform, and dependency-aware package manager that serves as an alternative solver to Conda's default.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue