Update YOLOv5 YAMLs to 'u' YAMLs (#800)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-02-04 19:54:34 +04:00 committed by GitHub
parent 0d182e80f1
commit 21ae321bc2
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
17 changed files with 68 additions and 46 deletions

View file

@ -70,7 +70,7 @@ from ultralytics.nn.modules import Detect, Segment
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, guess_model_task
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
from ultralytics.yolo.data.utils import check_det_dataset
from ultralytics.yolo.data.utils import check_det_dataset, IMAGENET_MEAN, IMAGENET_STD
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, get_default_args, yaml_save
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
from ultralytics.yolo.utils.files import file_size
@ -185,8 +185,8 @@ class Exporter:
if self.args.half and not coreml and not xml:
im, model = im.half(), model.half() # to FP16
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
LOGGER.info(
f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with input shape {tuple(im.shape)} and "
f"output shape {shape} ({file_size(file):.1f} MB)")
# Warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
@ -384,12 +384,18 @@ class Exporter:
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
f = self.file.with_suffix('.mlmodel')
task = self.model.task
if self.model.task == 'classify':
bias = [-x for x in IMAGENET_MEAN]
scale = 1 / 255 / (sum(IMAGENET_STD) / 3)
classifier_config = ct.ClassifierConfig(list(self.model.names.values()))
else:
bias = [0.0, 0.0, 0.0]
scale = 1 / 255
classifier_config = None
model = iOSModel(self.model, self.im).eval() if self.args.nms else self.model
ts = torch.jit.trace(model, self.im, strict=False) # TorchScript model
classifier_config = ct.ClassifierConfig(list(model.names.values())) if task == 'classify' else None
ct_model = ct.convert(ts,
inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])],
inputs=[ct.ImageType('image', shape=self.im.shape, scale=scale, bias=bias)],
classifier_config=classifier_config)
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
if bits < 32: