Check PyTorch model status for all YOLO methods (#945)

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
Glenn Jocher 2023-02-13 15:08:08 +04:00 committed by GitHub
parent fd5be10c66
commit 20fe708f31
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
21 changed files with 180 additions and 106 deletions

View file

@ -6,11 +6,11 @@ from typing import List
from ultralytics import yolo # noqa
from ultralytics.nn.tasks import (ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight,
guess_model_task)
guess_model_task, nn)
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, callbacks, yaml_load
from ultralytics.yolo.utils.checks import check_imgsz, check_yaml
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_yaml
from ultralytics.yolo.utils.downloads import GITHUB_ASSET_STEMS
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
@ -55,19 +55,16 @@ class YOLO:
self.cfg = None # if loaded from *.yaml
self.ckpt_path = None
self.overrides = {} # overrides for trainer object
self.metrics_data = None
# Load or create new YOLO model
suffix = Path(model).suffix
if not suffix and Path(model).stem in GITHUB_ASSET_STEMS:
model, suffix = Path(model).with_suffix('.pt'), '.pt' # add suffix, i.e. yolov8n -> yolov8n.pt
try:
if suffix == '.yaml':
self._new(model)
else:
self._load(model)
except Exception as e:
raise NotImplementedError(f"Unable to load model='{model}'. "
f"As an example try model='yolov8n.pt' or model='yolov8n.yaml'") from e
if suffix == '.yaml':
self._new(model)
else:
self._load(model)
def __call__(self, source=None, stream=False, **kwargs):
return self.predict(source, stream, **kwargs)
@ -100,15 +97,27 @@ class YOLO:
self.overrides = self.model.args
self._reset_ckpt_args(self.overrides)
else:
check_file(weights)
self.model, self.ckpt = weights, None
self.task = guess_model_task(weights)
self.ckpt_path = weights
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._assign_ops_from_task()
def _check_is_pytorch_model(self):
"""
Raises TypeError is model is not a PyTorch model
"""
if not isinstance(self.model, nn.Module):
raise TypeError(f"model='{self.model}' must be a PyTorch model, but is a different type. PyTorch models "
f"can be used to train, val, predict and export, i.e. "
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only "
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.")
def reset(self):
"""
Resets the model modules.
"""
self._check_is_pytorch_model()
for m in self.model.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
@ -122,9 +131,11 @@ class YOLO:
Args:
verbose (bool): Controls verbosity.
"""
self._check_is_pytorch_model()
self.model.info(verbose=verbose)
def fuse(self):
self._check_is_pytorch_model()
self.model.fuse()
def predict(self, source=None, stream=False, **kwargs):
@ -176,6 +187,8 @@ class YOLO:
validator = self.ValidatorClass(args=args)
validator(model=self.model)
self.metrics_data = validator.metrics
return validator.metrics
@smart_inference_mode()
@ -186,7 +199,7 @@ class YOLO:
Args:
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
"""
self._check_is_pytorch_model()
overrides = self.overrides.copy()
overrides.update(kwargs)
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
@ -196,7 +209,7 @@ class YOLO:
if args.batch == DEFAULT_CFG.batch:
args.batch = 1 # default to 1 if not modified
exporter = Exporter(overrides=args)
exporter(model=self.model)
return exporter(model=self.model)
def train(self, **kwargs):
"""
@ -205,6 +218,7 @@ class YOLO:
Args:
**kwargs (Any): Any number of arguments representing the training configuration.
"""
self._check_is_pytorch_model()
overrides = self.overrides.copy()
overrides.update(kwargs)
if kwargs.get("cfg"):
@ -226,6 +240,7 @@ class YOLO:
if RANK in {0, -1}:
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
self.overrides = self.model.args
self.metrics_data = self.trainer.validator.metrics
def to(self, device):
"""
@ -234,15 +249,14 @@ class YOLO:
Args:
device (str): device
"""
self._check_is_pytorch_model()
self.model.to(device)
def _assign_ops_from_task(self):
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[self.task]
# warning: eval is unsafe. Use with caution
trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))
validator_class = eval(val_lit.replace("TYPE", f"{self.type}"))
predictor_class = eval(pred_lit.replace("TYPE", f"{self.type}"))
return model_class, trainer_class, validator_class, predictor_class
@property
@ -250,7 +264,7 @@ class YOLO:
"""
Returns class names of the loaded model.
"""
return self.model.names
return self.model.names if hasattr(self.model, 'names') else None
@property
def transforms(self):
@ -259,6 +273,16 @@ class YOLO:
"""
return self.model.transforms if hasattr(self.model, 'transforms') else None
@property
def metrics(self):
"""
Returns metrics if computed
"""
if not self.metrics_data:
LOGGER.info("No metrics data found! Run training or validation operation first.")
return self.metrics_data
@staticmethod
def add_callback(event: str, func):
"""
@ -269,5 +293,5 @@ class YOLO:
@staticmethod
def _reset_ckpt_args(args):
for arg in 'augment', 'verbose', 'project', 'name', 'exist_ok', 'resume', 'batch', 'epochs', 'cache', \
'save_json', 'half', 'v5loader', 'device', 'cfg', 'save', 'rect', 'plots':
'save_json', 'half', 'v5loader', 'device', 'cfg', 'save', 'rect', 'plots', 'opset':
args.pop(arg, None)