ultralytics 8.0.141 create new SettingsManager (#3790)
This commit is contained in:
parent
42afe772d5
commit
20f5efd40a
215 changed files with 917 additions and 749 deletions
|
|
@ -4,7 +4,7 @@ description: Improve YOLOv5 model efficiency by pruning with Ultralytics. Unders
|
|||
keywords: YOLOv5, YOLO, Ultralytics, model pruning, PyTorch, machine learning, deep learning, computer vision, object detection
|
||||
---
|
||||
|
||||
📚 This guide explains how to apply **pruning** to YOLOv5 🚀 models.
|
||||
📚 This guide explains how to apply **pruning** to YOLOv5 🚀 models.
|
||||
UPDATED 25 September 2022.
|
||||
|
||||
## Before You Start
|
||||
|
|
@ -31,7 +31,7 @@ Output:
|
|||
val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
|
||||
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
|
||||
|
||||
Fusing layers...
|
||||
Fusing layers...
|
||||
Model Summary: 444 layers, 86705005 parameters, 0 gradients
|
||||
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
|
||||
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00, 2.16it/s]
|
||||
|
|
@ -67,7 +67,7 @@ We repeat the above test with a pruned model by using the `torch_utils.prune()`
|
|||
val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
|
||||
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
|
||||
|
||||
Fusing layers...
|
||||
Fusing layers...
|
||||
Model Summary: 444 layers, 86705005 parameters, 0 gradients
|
||||
Pruning model... 0.3 global sparsity
|
||||
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
|
||||
|
|
@ -107,4 +107,4 @@ YOLOv5 is designed to be run in the following up-to-date verified environments (
|
|||
|
||||
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
|
||||
|
||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue