ultralytics 8.0.141 create new SettingsManager (#3790)

This commit is contained in:
Glenn Jocher 2023-07-23 16:03:34 +02:00 committed by GitHub
parent 42afe772d5
commit 20f5efd40a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
215 changed files with 917 additions and 749 deletions

View file

@ -19,22 +19,22 @@ format with just a few lines of code.
```python
from ultralytics import YOLO
# Create a new YOLO model from scratch
model = YOLO('yolov8n.yaml')
# Load a pretrained YOLO model (recommended for training)
model = YOLO('yolov8n.pt')
# Train the model using the 'coco128.yaml' dataset for 3 epochs
results = model.train(data='coco128.yaml', epochs=3)
# Evaluate the model's performance on the validation set
results = model.val()
# Perform object detection on an image using the model
results = model('https://ultralytics.com/images/bus.jpg')
# Export the model to ONNX format
success = model.export(format='onnx')
```
@ -135,7 +135,7 @@ predicts the classes and locations of objects in the input images or videos.
=== "Results usage"
```python
# results would be a list of Results object including all the predictions by default
# but be careful as it could occupy a lot memory when there're many images,
# but be careful as it could occupy a lot memory when there're many images,
# especially the task is segmentation.
# 1. return as a list
results = model.predict(source="folder")
@ -161,7 +161,7 @@ predicts the classes and locations of objects in the input images or videos.
# Classification
result.probs # cls prob, (num_class, )
# Each result is composed of torch.Tensor by default,
# Each result is composed of torch.Tensor by default,
# in which you can easily use following functionality:
result = result.cuda()
result = result.cpu()
@ -210,18 +210,18 @@ for applications such as surveillance systems or self-driving cars.
!!! example "Track"
=== "Python"
```python
from ultralytics import YOLO
# Load a model
model = YOLO('yolov8n.pt') # load an official detection model
model = YOLO('yolov8n-seg.pt') # load an official segmentation model
model = YOLO('path/to/best.pt') # load a custom model
# Track with the model
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True)
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True, tracker="bytetrack.yaml")
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True)
results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True, tracker="bytetrack.yaml")
```
[Track Examples](../modes/track.md){ .md-button .md-button--primary}
@ -237,11 +237,11 @@ their specific use case based on their requirements for speed and accuracy.
!!! example "Benchmark"
=== "Python"
Benchmark an official YOLOv8n model across all export formats.
```python
from ultralytics.utils.benchmarks import benchmark
# Benchmark
benchmark(model='yolov8n.pt', data='coco8.yaml', imgsz=640, half=False, device=0)
```