ultralytics 8.0.141 create new SettingsManager (#3790)
This commit is contained in:
parent
42afe772d5
commit
20f5efd40a
215 changed files with 917 additions and 749 deletions
|
|
@ -21,20 +21,20 @@ Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. See Argum
|
|||
Device is determined automatically. If a GPU is available then it will be used, otherwise training will start on CPU.
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.yaml') # build a new model from YAML
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
|
||||
|
||||
|
||||
# Train the model
|
||||
model.train(data='coco128.yaml', epochs=100, imgsz=640)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640
|
||||
|
|
@ -53,18 +53,18 @@ The training device can be specified using the `device` argument. If no argument
|
|||
!!! example "Multi-GPU Training Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
|
||||
|
||||
# Train the model with 2 GPUs
|
||||
model.train(data='coco128.yaml', epochs=100, imgsz=640, device=[0, 1])
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model using GPUs 0 and 1
|
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640 device=0,1
|
||||
|
|
@ -79,18 +79,18 @@ To enable training on Apple M1 and M2 chips, you should specify 'mps' as your de
|
|||
!!! example "MPS Training Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
|
||||
|
||||
# Train the model with 2 GPUs
|
||||
model.train(data='coco128.yaml', epochs=100, imgsz=640, device='mps')
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model using GPUs 0 and 1
|
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640 device=mps
|
||||
|
|
@ -111,18 +111,18 @@ Below is an example of how to resume an interrupted training using Python and vi
|
|||
!!! example "Resume Training Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
# Load a model
|
||||
model = YOLO('path/to/last.pt') # load a partially trained model
|
||||
|
||||
|
||||
# Resume training
|
||||
model.train(resume=True)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
|
||||
```bash
|
||||
# Resume an interrupted training
|
||||
yolo train resume model=path/to/last.pt
|
||||
|
|
@ -239,4 +239,4 @@ tensorboard --logdir ultralytics/runs # replace with 'runs' directory
|
|||
|
||||
This will load TensorBoard and direct it to the directory where your training logs are saved.
|
||||
|
||||
After setting up your logger, you can then proceed with your model training. All training metrics will be automatically logged in your chosen platform, and you can access these logs to monitor your model's performance over time, compare different models, and identify areas for improvement.
|
||||
After setting up your logger, you can then proceed with your model training. All training metrics will be automatically logged in your chosen platform, and you can access these logs to monitor your model's performance over time, compare different models, and identify areas for improvement.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue