ultralytics 8.1.23 add YOLOv9-C and E models (#8571)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Laughing 2024-03-04 21:27:23 +08:00 committed by GitHub
parent e138d701a0
commit 2071776a36
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 360 additions and 10 deletions

View file

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.1.22"
__version__ = "8.1.23"
from ultralytics.data.explorer.explorer import Explorer
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld

View file

@ -0,0 +1,36 @@
# YOLOv9
# parameters
nc: 80 # number of classes
# gelan backbone
backbone:
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]] # 2
- [-1, 1, ADown, [256]] # 3-P3/8
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]] # 4
- [-1, 1, ADown, [512]] # 5-P4/16
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 6
- [-1, 1, ADown, [512]] # 7-P5/32
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 8
- [-1, 1, SPPELAN, [512, 256]] # 9
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]] # 15 (P3/8-small)
- [-1, 1, ADown, [256]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 18 (P4/16-medium)
- [-1, 1, ADown, [512]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # DDetect(P3, P4, P5)

View file

@ -0,0 +1,60 @@
# YOLOv9
# parameters
nc: 80 # number of classes
# gelan backbone
backbone:
- [-1, 1, Silence, []]
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 3
- [-1, 1, ADown, [256]] # 4-P3/8
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 5
- [-1, 1, ADown, [512]] # 6-P4/16
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 7
- [-1, 1, ADown, [1024]] # 8-P5/32
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 9
- [1, 1, CBLinear, [[64]]] # 10
- [3, 1, CBLinear, [[64, 128]]] # 11
- [5, 1, CBLinear, [[64, 128, 256]]] # 12
- [7, 1, CBLinear, [[64, 128, 256, 512]]] # 13
- [9, 1, CBLinear, [[64, 128, 256, 512, 1024]]] # 14
- [0, 1, Conv, [64, 3, 2]] # 15-P1/2
- [[10, 11, 12, 13, 14, -1], 1, CBFuse, [[0, 0, 0, 0, 0]]] # 16
- [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
- [[11, 12, 13, 14, -1], 1, CBFuse, [[1, 1, 1, 1]]] # 18
- [-1, 1, RepNCSPELAN4, [256, 128, 64, 2]] # 19
- [-1, 1, ADown, [256]] # 20-P3/8
- [[12, 13, 14, -1], 1, CBFuse, [[2, 2, 2]]] # 21
- [-1, 1, RepNCSPELAN4, [512, 256, 128, 2]] # 22
- [-1, 1, ADown, [512]] # 23-P4/16
- [[13, 14, -1], 1, CBFuse, [[3, 3]]] # 24
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 25
- [-1, 1, ADown, [1024]] # 26-P5/32
- [[14, -1], 1, CBFuse, [[4]]] # 27
- [-1, 1, RepNCSPELAN4, [1024, 512, 256, 2]] # 28
- [-1, 1, SPPELAN, [512, 256]] # 29
# gelan head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 25], 1, Concat, [1]] # cat backbone P4
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 32
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 22], 1, Concat, [1]] # cat backbone P3
- [-1, 1, RepNCSPELAN4, [256, 256, 128, 2]] # 35 (P3/8-small)
- [-1, 1, ADown, [256]]
- [[-1, 32], 1, Concat, [1]] # cat head P4
- [-1, 1, RepNCSPELAN4, [512, 512, 256, 2]] # 38 (P4/16-medium)
- [-1, 1, ADown, [512]]
- [[-1, 29], 1, Concat, [1]] # cat head P5
- [-1, 1, RepNCSPELAN4, [512, 1024, 512, 2]] # 41 (P5/32-large)
# detect
- [[35, 38, 41], 1, Detect, [nc]] # Detect(P3, P4, P5)

View file

@ -201,7 +201,6 @@ class Exporter:
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
if edgetpu and not LINUX:
raise SystemError("Edge TPU export only supported on Linux. See https://coral.ai/docs/edgetpu/compiler/")
print(type(model))
if isinstance(model, WorldModel):
LOGGER.warning(
"WARNING ⚠️ YOLOWorld (original version) export is not supported to any format.\n"

View file

@ -40,6 +40,12 @@ from .block import (
ResNetLayer,
ContrastiveHead,
BNContrastiveHead,
RepNCSPELAN4,
ADown,
SPPELAN,
CBFuse,
CBLinear,
Silence,
)
from .conv import (
CBAM,
@ -123,4 +129,10 @@ __all__ = (
"ImagePoolingAttn",
"ContrastiveHead",
"BNContrastiveHead",
"RepNCSPELAN4",
"ADown",
"SPPELAN",
"CBFuse",
"CBLinear",
"Silence",
)

View file

@ -5,7 +5,7 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv, autopad
from .transformer import TransformerBlock
__all__ = (
@ -31,6 +31,12 @@ __all__ = (
"Proto",
"RepC3",
"ResNetLayer",
"RepNCSPELAN4",
"ADown",
"SPPELAN",
"CBFuse",
"CBLinear",
"Silence",
)
@ -531,7 +537,6 @@ class BNContrastiveHead(nn.Module):
Args:
embed_dims (int): Embed dimensions of text and image features.
norm_cfg (dict): Normalization parameters.
"""
def __init__(self, embed_dims: int):
@ -548,3 +553,146 @@ class BNContrastiveHead(nn.Module):
w = F.normalize(w, dim=-1, p=2)
x = torch.einsum("bchw,bkc->bkhw", x, w)
return x * self.logit_scale.exp() + self.bias
class RepBottleneck(nn.Module):
"""Rep bottleneck."""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
"""Initializes a RepBottleneck module with customizable in/out channels, shortcut option, groups and expansion
ratio.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = RepConv(c1, c_, k[0], 1)
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
"""Forward pass through RepBottleneck layer."""
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class RepCSP(nn.Module):
"""Rep CSP Bottleneck with 3 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
"""Forward pass through RepCSP layer."""
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
class RepNCSPELAN4(nn.Module):
"""CSP-ELAN."""
def __init__(self, c1, c2, c3, c4, n=1):
"""Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""
super().__init__()
self.c = c3 // 2
self.cv1 = Conv(c1, c3, 1, 1)
self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
def forward(self, x):
"""Forward pass through RepNCSPELAN4 layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
def forward_split(self, x):
"""Forward pass using split() instead of chunk()."""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
class ADown(nn.Module):
"""ADown."""
def __init__(self, c1, c2):
"""Initializes ADown module with convolution layers to downsample input from channels c1 to c2."""
super().__init__()
self.c = c2 // 2
self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
def forward(self, x):
"""Forward pass through ADown layer."""
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
x1, x2 = x.chunk(2, 1)
x1 = self.cv1(x1)
x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
x2 = self.cv2(x2)
return torch.cat((x1, x2), 1)
class SPPELAN(nn.Module):
"""SPP-ELAN."""
def __init__(self, c1, c2, c3, k=5):
"""Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling."""
super().__init__()
self.c = c3
self.cv1 = Conv(c1, c3, 1, 1)
self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
self.cv5 = Conv(4 * c3, c2, 1, 1)
def forward(self, x):
"""Forward pass through SPPELAN layer."""
y = [self.cv1(x)]
y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
return self.cv5(torch.cat(y, 1))
class Silence(nn.Module):
"""Silence."""
def __init__(self):
"""Initializes the Silence module."""
super(Silence, self).__init__()
def forward(self, x):
"""Forward pass through Silence layer."""
return x
class CBLinear(nn.Module):
"""CBLinear."""
def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):
"""Initializes the CBLinear module, passing inputs unchanged."""
super(CBLinear, self).__init__()
self.c2s = c2s
self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)
def forward(self, x):
"""Forward pass through CBLinear layer."""
outs = self.conv(x).split(self.c2s, dim=1)
return outs
class CBFuse(nn.Module):
"""CBFuse."""
def __init__(self, idx):
"""Initializes CBFuse module with layer index for selective feature fusion."""
super(CBFuse, self).__init__()
self.idx = idx
def forward(self, xs):
"""Forward pass through CBFuse layer."""
target_size = xs[-1].shape[2:]
res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
return out

View file

@ -43,6 +43,12 @@ from ultralytics.nn.modules import (
RTDETRDecoder,
Segment,
WorldDetect,
RepNCSPELAN4,
ADown,
SPPELAN,
CBFuse,
CBLinear,
Silence,
)
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
@ -570,7 +576,7 @@ class WorldModel(DetectionModel):
text_token = clip.tokenize(text).to(device)
txt_feats = model.encode_text(text_token).to(dtype=torch.float32)
txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
self.txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1])
self.txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1]).detach()
self.model[-1].nc = len(text)
def init_criterion(self):
@ -850,6 +856,9 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
C1,
C2,
C2f,
RepNCSPELAN4,
ADown,
SPPELAN,
C2fAttn,
C3,
C3TR,
@ -892,6 +901,12 @@ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
args[2] = make_divisible(min(args[2], max_channels) * width, 8)
elif m is RTDETRDecoder: # special case, channels arg must be passed in index 1
args.insert(1, [ch[x] for x in f])
elif m is CBLinear:
c2 = args[0]
c1 = ch[f]
args = [c1, c2, *args[1:]]
elif m is CBFuse:
c2 = ch[f[-1]]
else:
c2 = ch[f]

View file

@ -22,6 +22,7 @@ GITHUB_ASSETS_NAMES = (
+ [f"yolov3{k}u.pt" for k in ("", "-spp", "-tiny")]
+ [f"yolov8{k}-world.pt" for k in "smlx"]
+ [f"yolov8{k}-worldv2.pt" for k in "smlx"]
+ [f"yolov9{k}.pt" for k in "ce"]
+ [f"yolo_nas_{k}.pt" for k in "sml"]
+ [f"sam_{k}.pt" for k in "bl"]
+ [f"FastSAM-{k}.pt" for k in "sx"]