ultralytics 8.0.65 YOLOv8 Pose models (#1347)

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Mert Can Demir <validatedev@gmail.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Fabian Greavu <fabiangreavu@gmail.com>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
Co-authored-by: Eric Pedley <ericpedley@gmail.com>
Co-authored-by: JustasBart <40023722+JustasBart@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Aarni Koskela <akx@iki.fi>
Co-authored-by: Sergio Sanchez <sergio.ssm.97@gmail.com>
Co-authored-by: Bogdan Gheorghe <112427971+bogdan-galileo@users.noreply.github.com>
Co-authored-by: Jaap van de Loosdrecht <jaap@vdlmv.nl>
Co-authored-by: Noobtoss <96134731+Noobtoss@users.noreply.github.com>
Co-authored-by: nerdyespresso <106761627+nerdyespresso@users.noreply.github.com>
Co-authored-by: Farid Inawan <frdteknikelektro@gmail.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Alexander Duda <Alexander.Duda@me.com>
Co-authored-by: Mehran Ghandehari <mehran.maps@gmail.com>
Co-authored-by: Snyk bot <snyk-bot@snyk.io>
Co-authored-by: majid nasiri <majnasai@gmail.com>
This commit is contained in:
Ayush Chaurasia 2023-04-06 03:55:32 +05:30 committed by GitHub
parent 9af3e69b1a
commit 1cb92d7f42
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
57 changed files with 1578 additions and 489 deletions

View file

@ -281,28 +281,23 @@ def clip_boxes(boxes, shape):
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
def clip_coords(boxes, shape):
def clip_coords(coords, shape):
"""
Clip bounding xyxy bounding boxes to image shape (height, width).
Clip line coordinates to the image boundaries.
Args:
boxes (torch.Tensor or numpy.ndarray): Bounding boxes to be clipped.
shape (tuple): The shape of the image. (height, width)
coords (torch.Tensor) or (numpy.ndarray): A list of line coordinates.
shape (tuple): A tuple of integers representing the size of the image in the format (height, width).
Returns:
None
Note:
The input `boxes` is modified in-place, there is no return value.
(None): The function modifies the input `coordinates` in place, by clipping each coordinate to the image boundaries.
"""
if isinstance(boxes, torch.Tensor): # faster individually
boxes[:, 0].clamp_(0, shape[1]) # x1
boxes[:, 1].clamp_(0, shape[0]) # y1
boxes[:, 2].clamp_(0, shape[1]) # x2
boxes[:, 3].clamp_(0, shape[0]) # y2
if isinstance(coords, torch.Tensor): # faster individually
coords[..., 0].clamp_(0, shape[1]) # x
coords[..., 1].clamp_(0, shape[0]) # y
else: # np.array (faster grouped)
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
coords[..., 0] = coords[..., 0].clip(0, shape[1]) # x
coords[..., 1] = coords[..., 1].clip(0, shape[0]) # y
def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
@ -577,17 +572,18 @@ def process_mask_upsample(protos, masks_in, bboxes, shape):
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
"""
It takes the output of the mask head, and applies the mask to the bounding boxes. This is faster but produces
downsampled quality of mask
Apply masks to bounding boxes using the output of the mask head.
Args:
protos (torch.Tensor): [mask_dim, mask_h, mask_w]
masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
bboxes (torch.Tensor): [n, 4], n is number of masks after nms
shape (tuple): the size of the input image (h,w)
protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w].
masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS.
bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS.
shape (tuple): A tuple of integers representing the size of the input image in the format (h, w).
upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False.
Returns:
(torch.Tensor): The processed masks.
(torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w
are the height and width of the input image. The mask is applied to the bounding boxes.
"""
c, mh, mw = protos.shape # CHW
@ -632,19 +628,19 @@ def process_mask_native(protos, masks_in, bboxes, shape):
return masks.gt_(0.5)
def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False):
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False):
"""
Rescale segment coordinates (xyxy) from img1_shape to img0_shape
Args:
img1_shape (tuple): The shape of the image that the segments are from.
segments (torch.Tensor): the segments to be scaled
img1_shape (tuple): The shape of the image that the coords are from.
coords (torch.Tensor): the coords to be scaled
img0_shape (tuple): the shape of the image that the segmentation is being applied to
ratio_pad (tuple): the ratio of the image size to the padded image size.
normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False
Returns:
segments (torch.Tensor): the segmented image.
coords (torch.Tensor): the segmented image.
"""
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
@ -653,14 +649,15 @@ def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=F
gain = ratio_pad[0][0]
pad = ratio_pad[1]
segments[:, 0] -= pad[0] # x padding
segments[:, 1] -= pad[1] # y padding
segments /= gain
clip_segments(segments, img0_shape)
coords[..., 0] -= pad[0] # x padding
coords[..., 1] -= pad[1] # y padding
coords[..., 0] /= gain
coords[..., 1] /= gain
clip_coords(coords, img0_shape)
if normalize:
segments[:, 0] /= img0_shape[1] # width
segments[:, 1] /= img0_shape[0] # height
return segments
coords[..., 0] /= img0_shape[1] # width
coords[..., 1] /= img0_shape[0] # height
return coords
def masks2segments(masks, strategy='largest'):
@ -688,23 +685,6 @@ def masks2segments(masks, strategy='largest'):
return segments
def clip_segments(segments, shape):
"""
It takes a list of line segments (x1,y1,x2,y2) and clips them to the image shape (height, width)
Args:
segments (list): a list of segments, each segment is a list of points, each point is a list of x,y
coordinates
shape (tuple): the shape of the image
"""
if isinstance(segments, torch.Tensor): # faster individually
segments[:, 0].clamp_(0, shape[1]) # x
segments[:, 1].clamp_(0, shape[0]) # y
else: # np.array (faster grouped)
segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x
segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y
def clean_str(s):
"""
Cleans a string by replacing special characters with underscore _