ultralytics 8.0.143 add Model base class (#3934)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
3c787eb080
commit
1a0eb3f099
15 changed files with 182 additions and 407 deletions
|
|
@ -3,51 +3,38 @@
|
|||
SAM model interface
|
||||
"""
|
||||
|
||||
from ultralytics.cfg import get_cfg
|
||||
from ultralytics.engine.model import Model
|
||||
from ultralytics.utils.torch_utils import model_info
|
||||
|
||||
from .build import build_sam
|
||||
from .predict import Predictor
|
||||
|
||||
|
||||
class SAM:
|
||||
class SAM(Model):
|
||||
"""
|
||||
SAM model interface.
|
||||
"""
|
||||
|
||||
def __init__(self, model='sam_b.pt') -> None:
|
||||
if model and not model.endswith('.pt') and not model.endswith('.pth'):
|
||||
# Should raise AssertionError instead?
|
||||
raise NotImplementedError('Segment anything prediction requires pre-trained checkpoint')
|
||||
self.model = build_sam(model)
|
||||
self.task = 'segment' # required
|
||||
self.predictor = None # reuse predictor
|
||||
super().__init__(model=model, task='segment')
|
||||
|
||||
def _load(self, weights: str, task=None):
|
||||
self.model = build_sam(weights)
|
||||
|
||||
def predict(self, source, stream=False, bboxes=None, points=None, labels=None, **kwargs):
|
||||
"""Predicts and returns segmentation masks for given image or video source."""
|
||||
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024)
|
||||
overrides.update(kwargs) # prefer kwargs
|
||||
if not self.predictor:
|
||||
self.predictor = Predictor(overrides=overrides)
|
||||
self.predictor.setup_model(model=self.model)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
||||
return self.predictor(source, stream=stream, bboxes=bboxes, points=points, labels=labels)
|
||||
|
||||
def train(self, **kwargs):
|
||||
"""Function trains models but raises an error as SAM models do not support training."""
|
||||
raise NotImplementedError("SAM models don't support training")
|
||||
|
||||
def val(self, **kwargs):
|
||||
"""Run validation given dataset."""
|
||||
raise NotImplementedError("SAM models don't support validation")
|
||||
kwargs.update(overrides)
|
||||
prompts = dict(bboxes=bboxes, points=points, labels=labels)
|
||||
super().predict(source, stream, prompts=prompts, **kwargs)
|
||||
|
||||
def __call__(self, source=None, stream=False, bboxes=None, points=None, labels=None, **kwargs):
|
||||
"""Calls the 'predict' function with given arguments to perform object detection."""
|
||||
return self.predict(source, stream, bboxes, points, labels, **kwargs)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
"""Raises error if object has no requested attribute."""
|
||||
name = self.__class__.__name__
|
||||
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
||||
|
||||
def info(self, detailed=False, verbose=True):
|
||||
"""
|
||||
Logs model info.
|
||||
|
|
@ -57,3 +44,7 @@ class SAM:
|
|||
verbose (bool): Controls verbosity.
|
||||
"""
|
||||
return model_info(self.model, detailed=detailed, verbose=verbose)
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
return {'segment': {'predictor': Predictor}}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue