FA CSS fix for MkDocs share buttons (#6437)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
652dc6f4b7
commit
17edc5cf1b
54 changed files with 79 additions and 72 deletions
|
|
@ -8,7 +8,7 @@ keywords: computer vision, datasets, Ultralytics, YOLO, object detection, instan
|
|||
|
||||
Ultralytics कंप्यूटर विज्ञान कार्यों को सुविधाजनक बनाने के लिए विभिन्न डेटासेट्स का समर्थन प्रदान करता है। इसमें वस्त्र स्पष्टीकरण, संदर्भ बनाने, पोज आकलन, वर्गीकरण और बहु-वस्तु ट्रैकिंग जैसे कंप्यूटर विज्ञान कार्यों के लिए। नीचे मुख्य Ultralytics डेटासेट की सूची है, इसके पश्चात प्रत्येक कंप्यूटर विज्ञान कार्य और संबंधित डेटासेटों का संक्षेप दिया गया है।
|
||||
|
||||
!!! Note
|
||||
!!! Note "नोट"
|
||||
|
||||
🚧 हमारे बहुभाषी दस्तावेज़ीकरण वर्तमान में निर्माणाधीन है, और हम इसे सुधारने के लिए कड़ी मेहनत कर रहे हैं। आपकी सहकार्य के लिए आपका धन्यवाद! 🙏
|
||||
|
||||
|
|
|
|||
|
|
@ -39,7 +39,7 @@ keywords: Ultralytics, YOLOv8, वस्तु पता लगाना, छव
|
|||
|
||||
YOLOv8 डॉक्स का अन्वेषण करें, यह एक व्यापक स्रोत है जो आपको इसके सुविधाओं और क्षमताओं को समझने और उपयोग करने में मदद करने के लिए विकसित किया गया है। चाहे आप एक अनुभवी मशीन लर्निंग प्रैक्टीशनर हो या क्षेत्र में नये हों, इस हब का उद्देश्य आपके परियोजनाओं में YOLOv8 की क्षमताओं को अधिकतम करना है।
|
||||
|
||||
!!! Note
|
||||
!!! Note "नोट"
|
||||
|
||||
🚧 हमारी बहुभाषी दस्तावेजीकरण वर्तमान में निर्माणाधीन है, और हम इसे सुधारने के लिए कठिनताओं पर काम कर रहे हैं। आपकी सहायता के लिए धन्यवाद! 🙏
|
||||
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ keywords: Ultralytics, दस्तावेज़ीकरण, YOLO, SAM, Mobil
|
|||
|
||||
Ultralytics के मॉडल दस्तावेज़ीकरण में आपका स्वागत है! हम विशेष टास्क जैसे [ऑब्जेक्ट डिटेक्शन](../tasks/detect.md), [इंस्टेंस सेग्मेंटेशन](../tasks/segment.md), [छवि श्रेणीबद्धीकरण](../tasks/classify.md), [पोज़ संख्यानन](../tasks/pose.md), और [मल्टी-ऑब्जेक्ट ट्रैकिंग](../modes/track.md) के लिए विशेष रूप से तैयार किए गए मॉडल का समर्थन करते हैं। अगर आप अपनी मॉडल वास्तुरचना को Ultralytics में योगदान देना चाहते हैं, तो हमारे [योगदान गाइड](../../help/contributing.md) की जांच करें।
|
||||
|
||||
!!! Note
|
||||
!!! Note "नोट"
|
||||
|
||||
🚧 हमारी बहुभाषी दस्तावेज़ीकरण वर्तमान में निर्माणाधीन है, और हम उसे सुधारने के लिए कठिनताओं पर काम कर रहे हैं। धन्यवाद आपकी सहानुभूति के लिए! 🙏
|
||||
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ keywords: Ultralytics, YOLOv8, मशीन लर्निंग, ऑब्ज
|
|||
|
||||
Ultralytics YOLOv8 सिर्फ एक ओब्जेक्ट डिटेक्शन मॉडल नहीं है; यह मशीन लर्निंग मॉडलों के पूर्ण जीवन चक्र के लिए एक विकशील फ्रेमवर्क है—डेटा संग्रह और मॉडल प्रशिक्षण से पुष्टीकरण, डिप्लॉयमेंट और वास्तविक दुनिया के ट्रैकिंग तक। प्रत्येक मोड का एक विशेष उद्देश्य होता है और आपको विभिन्न कार्यों और यूज-केस के लिए आवश्यक लचीलापन और कार्यक्षमता प्रदान करने के लिए बनाया जाता है।
|
||||
|
||||
!!! Note
|
||||
!!! Note "नोट"
|
||||
|
||||
🚧 हमारी बहुभाषीय दस्तावेज़ीकरण वर्तमान में निर्माणाधीन है, और हम इसे सुधारने के लिए कड़ी मेहनत कर रहे हैं। आपकी सहनशीलता के लिए धन्यवाद! 🙏
|
||||
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ keywords: Ultralytics स्थापना, pip install Ultralytics, Docker ins
|
|||
|
||||
Ultralytics ने pip, conda और Docker सहित कई स्थापना विधियाँ प्रदान की हैं। नवीनतम स्थिर संस्करण के लिए `ultralytics` pip पैकेज का उपयोग करके YOLOv8 स्थापित करें या सबसे अद्यतित संस्करण के लिए [Ultralytics GitHub repository](https://github.com/ultralytics/ultralytics) क्लोन करें। Docker का उपयोग करके, स्थानीय स्थापना से बच कर, एक छोटे जगह में पैकेज के नए संस्करण का निष्पादन किया जा सकता है।
|
||||
|
||||
!!! Note
|
||||
!!! Note "नोट"
|
||||
|
||||
🚧 हमारे बहुभाषीय दस्तावेज़ीकरण की वर्तमान में निर्माणाधीन है और हम उसे सुधारने के लिए कठिनताओं पर काम कर रहे हैं। आपके धैर्य के लिए धन्यवाद! 🙏
|
||||
|
||||
|
|
@ -43,7 +43,7 @@ Ultralytics ने pip, conda और Docker सहित कई स्थाप
|
|||
conda install -c conda-forge ultralytics
|
||||
```
|
||||
|
||||
!!! Note
|
||||
!!! Note "नोट"
|
||||
|
||||
यदि आप CUDA परिवेश में स्थापित कर रहे हैं तो सर्वोत्तम अनुशंसा है कि आप कमांड-लाइन पर `pytorch` और `pytorch-cuda` स्थापित करने के लिए कमांड एक साथ इंस्टॉल करें ताकि कोण्डा पैकेज प्रबंधक को कोई भी टकराव सुलझाने के लिए अनुमति मिले, या फिर जरूरत पड़ने पर CPU-विशिष्ट `pytorch` पैकेज को CPU-विशिष्ट होने वाले `pytorch-cuda` पैकेज को अधिरोहित करने की अनुमति दें।
|
||||
```bash
|
||||
|
|
@ -145,7 +145,7 @@ Ultralytics ने pip, conda और Docker सहित कई स्थाप
|
|||
|
||||
Ultralytics कमांड लाइन इंटरफ़ेस (CLI) आसान एकल-पंक्ति कमांड के लिए संक्षेप में होसला अद्यतित करता है, पायथन पर्यावरण की ज़रूरत के बिना। CLI कोई अनुकूलन या पायथन कोड की आवश्यकता नहीं होती है। आप केवल `yolo` कमांड के साथ टर्मिनल से सभी कार्यों को चला सकते हैं। CLI से YOLOv8 का उपयोग करने के बारे में और अधिक जानने के लिए [CLI Guide](/../usage/cli.md) देखें।
|
||||
|
||||
!!! Example
|
||||
!!! Example "उदाहरण"
|
||||
|
||||
=== "संयोजन"
|
||||
Ultralytics `yolo` कमांड का उपयोग निम्नलिखित प्रारूप का उपयोग करता है:
|
||||
|
|
@ -213,7 +213,7 @@ YOLOv8 का Python इंटरफ़ेस आपकी Python परिय
|
|||
|
||||
उदाहरण के लिए, उपयोगकर्ता संख्या गिनती के लिए कुछ-कुछ तारणी की योजना में मॉडल को लोड करके उसे प्रशिक्षित कर सकते हैं, इसका मूल्यांकन समाप्त कर सकते हैं और यदि आवश्यक हो, उसे ONNX प्रारूप में निर्यात कर सकते हैं। अपनी Python परियोजनाओं में YOLOv8 का उपयोग करने के बारे में और अधिक जानने के लिए [Python Guide](/../usage/python.md) देखें।
|
||||
|
||||
!!! Example
|
||||
!!! Example "उदाहरण"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ keywords: Ultralytics, YOLOv8, डिटेक्शन, सेग्में
|
|||
|
||||
YOLOv8 एक AI फ्रेमवर्क है जो मल्टीपल कंप्यूटर विजन **तास्क्स** को सपोर्ट करता है। इस फ्रेमवर्क का उपयोग [डिटेक्शन](detect.md), [सेग्मेंटेशन](segment.md), [क्लासिफिकेशन](classify.md), और [पोज़](pose.md) एस्टिमेशन को करने के लिए किया जा सकता हैं। हर टास्क का एक अलग उद्देश्य और यूज केस होता हैं।
|
||||
|
||||
!!! Note
|
||||
!!! Note "नोट"
|
||||
|
||||
🚧 हमारा मल्टी-भाषा डॉक्युमेंटेशन वर्तमान में निर्माणाधीन हैं, और हम उसे सुधारने के लिए मेहनत कर रहें हैं। आपकी सहानुभूति के लिए धन्यवाद! 🙏
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue