FA CSS fix for MkDocs share buttons (#6437)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Glenn Jocher 2023-11-19 15:56:38 +01:00 committed by GitHub
parent 652dc6f4b7
commit 17edc5cf1b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
54 changed files with 79 additions and 72 deletions

View file

@ -39,7 +39,7 @@ Ultralytics propose diverses méthodes d'installation, y compris pip, conda et D
conda install -c conda-forge ultralytics
```
!!! Note
!!! Note "Note"
Si vous installez dans un environnement CUDA, la meilleure pratique est d'installer `ultralytics`, `pytorch` et `pytorch-cuda` dans la même commande pour permettre au gestionnaire de package conda de résoudre les conflits, ou bien d'installer `pytorch-cuda` en dernier pour lui permettre de remplacer le package `pytorch` spécifique aux CPU si nécessaire.
```bash
@ -101,7 +101,7 @@ Voir le fichier [requirements.txt](https://github.com/ultralytics/ultralytics/bl
L'interface en ligne de commande (CLI) d'Ultralytics permet l'utilisation de commandes simples en une seule ligne sans nécessiter d'environnement Python. La CLI ne requiert pas de personnalisation ou de code Python. Vous pouvez simplement exécuter toutes les tâches depuis le terminal avec la commande `yolo`. Consultez le [Guide CLI](/../usage/cli.md) pour en savoir plus sur l'utilisation de YOLOv8 depuis la ligne de commande.
!!! Example
!!! Example "Exemple"
=== "Syntaxe"
@ -171,7 +171,7 @@ L'interface Python de YOLOv8 permet une intégration transparente dans vos proje
Par exemple, les utilisateurs peuvent charger un modèle, l'entraîner, évaluer ses performances sur un set de validation, et même l'exporter au format ONNX avec seulement quelques lignes de code. Consultez le [Guide Python](/../usage/python.md) pour en savoir plus sur l'utilisation de YOLOv8 au sein de vos projets Python.
!!! Example
!!! Example "Exemple"
```python
from ultralytics import YOLO