Update https://docs.ultralytics.com/models (#6513)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
0c4e97443b
commit
16a13a1ce0
178 changed files with 14224 additions and 561 deletions
|
|
@ -1,32 +1,32 @@
|
|||
---
|
||||
comments: true
|
||||
description: Ultralytics द्वारा समर्थित YOLO समूह, SAM, MobileSAM, FastSAM, YOLO-NAS, और RT-DETR मॉडल्स की विविधता का पता लगाएं। CLI और Python उपयोग के लिए उदाहरणों के साथ शुरू हो जाएं।
|
||||
keywords: Ultralytics, दस्तावेज़ीकरण, YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS, RT-DETR, मॉडल, वास्तुरचना, Python, CLI
|
||||
description: Ultralytics द्वारा समर्थित YOLO परिवार की विविध रेंज, SAM, MobileSAM, FastSAM, YOLO-NAS, और RT-DETR मॉडल्स का पता लगाएं। CLI और Python उपयोग के लिए उदाहरणों के साथ प्रारंभ करें।
|
||||
keywords: Ultralytics, दस्तावेज़ीकरण, YOLO, SAM, MobileSAM, FastSAM, YOLO-NAS, RT-DETR, मॉडल्स, आर्किटेक्चर्स, Python, CLI
|
||||
---
|
||||
|
||||
# Ultralytics द्वारा समर्थित मॉडल्स
|
||||
# Ultralytics द्वारा समर्थित मॉडल
|
||||
|
||||
Ultralytics के मॉडल दस्तावेज़ीकरण में आपका स्वागत है! हम विशेष टास्क जैसे [ऑब्जेक्ट डिटेक्शन](../tasks/detect.md), [इंस्टेंस सेग्मेंटेशन](../tasks/segment.md), [छवि श्रेणीबद्धीकरण](../tasks/classify.md), [पोज़ संख्यानन](../tasks/pose.md), और [मल्टी-ऑब्जेक्ट ट्रैकिंग](../modes/track.md) के लिए विशेष रूप से तैयार किए गए मॉडल का समर्थन करते हैं। अगर आप अपनी मॉडल वास्तुरचना को Ultralytics में योगदान देना चाहते हैं, तो हमारे [योगदान गाइड](../../help/contributing.md) की जांच करें।
|
||||
Ultralytics के मॉडल दस्तावेज़ीकरण में आपका स्वागत है! हम [ऑब्जेक्ट डिटेक्शन](../tasks/detect.md), [इंस्टेंस सेगमेंटेशन](../tasks/segment.md), [इमेज क्लासिफिकेशन](../tasks/classify.md), [पोज़ एस्टिमेशन](../tasks/pose.md), और [मल्टी-ऑब्जेक्ट ट्रैकिंग](../modes/track.md) जैसे विशिष्ट कामों के लिए डिज़ाइन किए गए मॉडलों की एक विस्तृत रेंज का समर्थन प्रदान करते हैं। यदि आप Ultralytics में अपने मॉडल आर्किटेक्चर को योगदान देने में रुचि रखते हैं, तो हमारा [Contributing Guide](../../help/contributing.md) देखें।
|
||||
|
||||
!!! Note "नोट"
|
||||
!!! Note "ध्यान दें"
|
||||
|
||||
🚧 हमारी बहुभाषी दस्तावेज़ीकरण वर्तमान में निर्माणाधीन है, और हम उसे सुधारने के लिए कठिनताओं पर काम कर रहे हैं। धन्यवाद आपकी सहानुभूति के लिए! 🙏
|
||||
🚧 हमारी अलग-अलग भाषाओं में दस्तावेज़ीकरण वर्तमान में निर्माणाधीन है, और हम इसे सुधारने के लिए कठिन परिश्रम कर रहे हैं। धैर्य रखने के लिए धन्यवाद! 🙏
|
||||
|
||||
## प्रमुख मॉडल
|
||||
|
||||
यहां कुछ महत्वपूर्ण मॉडल हैं जिन्हें समर्थित किया जाता है:
|
||||
यहां कुछ मुख्य मॉडल दिए गए हैं:
|
||||
|
||||
1. **[YOLOv3](../../models/yolov3.md)**: YOLO मॉडल परिवार का तीसरा संस्करण, जो मूल रूप में Joseph Redmon द्वारा विकसित किया गया था, जिसे उसकी क्षमता के लिए जाना जाता है सही समय में ऑब्जेक्ट डिटेक्शन की।
|
||||
2. **[YOLOv4](../../models/yolov4.md)**: YOLOv3 के लिए एक डार्कनेट जन्मित अपडेट, जिसे Alexey Bochkovskiy ने 2020 में जारी किया।
|
||||
3. **[YOLOv5](../../models/yolov5.md)**: यूल्ट्रालिटिक्स द्वारा योगदान की एक सुधारी हुई YOLO वास्तुरचि। पिछले संस्करणों की तुलना में बेहतर प्रदर्शन और गति विपरीत संलग्नाता प्रदान करने का वादा।
|
||||
4. **[YOLOv6](../../models/yolov6.md)**: 2022 में [मेटुआन](https://about.meituan.com/) द्वारा जारी किया गया, और कंपनी के कई स्वतंत्र वितरण रोबोट में प्रयोग होता है।
|
||||
5. **[YOLOv7](../../models/yolov7.md)**: YOLOv4 के लेखकों द्वारा जारी किए गए नवीनतम YOLO मॉडल्स।
|
||||
6. **[YOLOv8](../../models/yolov8.md)**: YOLO परिवार का नवीनतम संस्करण, जिसमें घटनाक्रम सेग्मेंटेशन, पोज़/कीपॉइंट्स अनुमान, और वर्गीकरण जैसी बढ़ी हुई क्षमताएं होती हैं।
|
||||
7. **[सेगमेंट एनीथिंग मॉडल (SAM)](../../models/sam.md)**: मेटा का सेगमेंट एनीथिंग मॉडल (SAM)।
|
||||
8. **[मोबाइल सेगमेंट एनीथिंग मॉडल (MobileSAM)](../../models/mobile-sam.md)**: मोबाइल एप्लिकेशनों के लिए MobileSAM, Kyung Hee विश्वविद्यालय द्वारा।
|
||||
9. **[फ़ास्ट सेगमेंट एनीथिंग मॉडल (FastSAM)](../../models/fast-sam.md)**: दृश्य और वीडियो विश्लेषण समूह, स्वचालन विज्ञान संस्थान, चीन संगठन द्वारा FastSAM।
|
||||
10. **[YOLO-NAS](../../models/yolo-nas.md)**: YOLO Neural Architecture Search (NAS) मॉडल्स।
|
||||
11. **[रियलटाइम डिटेक्शन ट्रांसफॉर्मर (RT-DETR)](../../models/rtdetr.md)**: बाइडू का PaddlePaddle रियलटाइम डिटेक्शन ट्रांसफॉर्मर (RT-DETR) मॉडल।
|
||||
1. **[YOLOv3](yolov3.md)**: YOLO मॉडल परिवार का तीसरा संस्करण, जिसे जोसेफ रेडमोन द्वारा बनाया गया है, जो इसकी कुशल रियल-टाइम ऑब्जेक्ट डिटेक्शन क्षमताओं के लिए जाना जाता है।
|
||||
2. **[YOLOv4](yolov4.md)**: YOLOv3 को अपडेट करने वाला एक डार्कनेट-नेटिव, जिसे 2020 में एलेक्सी बोचकोवस्की द्वारा जारी किया गया।
|
||||
3. **[YOLOv5](yolov5.md)**: उल्ट्रालाइटिक्स द्वारा बेहतर YOLO आर्किटेक्चर का एक सुधारित संस्करण, जो पिछले संस्करणों की तुलना में बेहतर प्रदर्शन और गति की समझौता की पेशकश करता है।
|
||||
4. **[YOLOv6](yolov6.md)**: 2022 में [Meituan](https://about.meituan.com/) द्वारा जारी किया गया, और कंपनी के कई स्वायत्त डिलीवरी रोबोट्स में उपयोग में।
|
||||
5. **[YOLOv7](yolov7.md)**: 2022 में YOLOv4 के लेखकों द्वारा जारी किया गया अपडेटेड YOLO मॉडल।
|
||||
6. **[YOLOv8](yolov8.md) नया 🚀**: YOLO परिवार का नवीनतम संस्करण, जिसमें इंस्टेंस सेगमेंटेशन, पोज/कीपॉइंट्स अनुमान, और क्लासिफिकेशन जैसी उन्नत क्षमताएं शामिल हैं।
|
||||
7. **[Segment Anything Model (SAM)](sam.md)**: मेटा के Segment Anything Model (SAM)।
|
||||
8. **[Mobile Segment Anything Model (MobileSAM)](mobile-sam.md)**: मोबाइल एप्लिकेशनों के लिए MobileSAM, क्युंग ही यूनिवर्सिटी द्वारा।
|
||||
9. **[Fast Segment Anything Model (FastSAM)](fast-sam.md)**: चीनी विज्ञान अकादमी, ऑटोमेशन संस्थान के इमेज & वीडियो एनालिसिस ग्रुप द्वारा FastSAM।
|
||||
10. **[YOLO-NAS](yolo-nas.md)**: YOLO न्यूरल आर्किटेक्चर सर्च (NAS) मॉडल्स।
|
||||
11. **[Realtime Detection Transformers (RT-DETR)](rtdetr.md)**: बैदु के पडलपैडल Realtime Detection Transformer (RT-DETR) मॉडल।
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
|
|
@ -36,59 +36,63 @@ Ultralytics के मॉडल दस्तावेज़ीकरण मे
|
|||
allowfullscreen>
|
||||
</iframe>
|
||||
<br>
|
||||
<strong>देखें:</strong> थोड़ी सी कोड के कुछ पंक्तियों में Ultralytics YOLO मॉडल चलाएँ।
|
||||
<strong>देखें:</strong> कुछ लाइनों के कोड में Ultralytics YOLO मॉडल्स को चलाएं।
|
||||
</p>
|
||||
|
||||
## प्रारंभ करना: उपयोग उदाहरण
|
||||
|
||||
यह उदाहरण योलो प्रशिक्षण और अनुमान के सरल उदाहरण प्रदान करता है। इन और अन्य [modes](../modes/index.md) के पूर्ण दस्तावेज़ीकरण के लिए [Predict](../modes/predict.md), [Train](../modes/train.md), [Val](../modes/val.md) और [Export](../modes/export.md) दस्तावेज़ों के पन्नों को देखें।
|
||||
|
||||
नीचे दिया गया उदाहरण YOLOv8 [Detect](../tasks/detect.md) मॉडल्स के लिए है, जो ऑब्जेक्ट डिटेक्शन के लिए हैं। अतिरिक्त समर्थित कार्यों के लिए [Segment](../tasks/segment.md), [Classify](../tasks/classify.md) और [Pose](../tasks/pose.md) दस्तावेज़ों को देखें।
|
||||
|
||||
!!! Example "उदाहरण"
|
||||
|
||||
=== "Python"
|
||||
|
||||
PyTorch पूर्व-प्रशिक्षित `*.pt` मॉडल और विन्यास `*.yaml` फ़ाइलों को पायथन में योगदान करने के लिए `YOLO()`, `SAM()`, `NAS()` और `RTDETR()` कक्षाओं को पास करके मॉडल की एक नमूना उत्पन्न की जा सकती है:
|
||||
पायथन में मॉडल बनाने के लिए PyTorch प्रीट्रेन्ड '*.pt' मॉडल्स के साथ-साथ कॉन्फ़िगरेशन '*.yaml' फ़ाइलों को `YOLO()`, `SAM()`, `NAS()` और `RTDETR()` क्लासेज़ में पास किया जा सकता है:
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# एक COCO-पूर्व-प्रशिक्षित YOLOv8n मॉडल लोड करें
|
||||
# COCO-प्रीट्रेन्ड YOLOv8n मॉडल लोड करें
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
# मॉडल जानकारी प्रदर्शित करें (वैकल्पिक)
|
||||
# मॉडल की जानकारी दिखाएँ (वैकल्पिक)
|
||||
model.info()
|
||||
|
||||
# COCO8 उदाहरण डेटासेट पर मॉडल 100 एपॉक्स के लिए प्रशिक्षित करें
|
||||
# COCO8 उदाहरण डेटासेट पर 100 एपोक्स के लिए मॉडल प्रशिक्षित करें
|
||||
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
|
||||
|
||||
# YOLOv8n मॉडल के साथ 'bus.jpg' छवि पर इंफ़ेरेंस चलाएँ
|
||||
# 'bus.jpg' इमेज पर YOLOv8n मॉडल के साथ अनुमान चलाएँ
|
||||
results = model('path/to/bus.jpg')
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
मॉडलों को सीधे चलाने के लिए CLI कमांड प्रदान किए गए हैं:
|
||||
CLI कमांड्स उपलब्ध हैं जो सीधे मॉडल्स को चलाने के लिए हैं:
|
||||
|
||||
```bash
|
||||
# एक COCO-पूर्व-प्रशिक्षित YOLOv8n मॉडल लोड करें और इसे COCO8 उदाहरण डेटासेट पर 100 एपॉक्स के लिए प्रशिक्षित करें
|
||||
# COCO-प्रीट्रेन्ड YOLOv8n मॉडल को लोड करें और COCO8 उदाहरण डेटासेट पर 100 एपोक्स के लिए प्रशिक्षित करें
|
||||
yolo train model=yolov8n.pt data=coco8.yaml epochs=100 imgsz=640
|
||||
|
||||
# एक COCO-पूर्व-प्रशिक्षित YOLOv8n मॉडल लोड करें और 'bus.jpg' छवि पर इंफ़ेरेंस चलाएँ
|
||||
# COCO-प्रीट्रेन्ड YOLOv8n मॉडल को लोड करें और 'bus.jpg' इमेज पर अनुमान चलाएँ
|
||||
yolo predict model=yolov8n.pt source=path/to/bus.jpg
|
||||
```
|
||||
|
||||
## नए मॉडल का योगदान देना
|
||||
## नए मॉडल्स का योगदान
|
||||
|
||||
Ultralytics में अपना मॉडल योगदान करने में रुचि है? शानदार! हमें हमेशा अपने मॉडल पोर्टफोलियो का विस्तार करने के लिए खुले दिमाग से आगे बढ़ने की आवश्यकता है।
|
||||
आप Ultralytics में अपने मॉडल का योगदान देने के इच्छुक हैं? बहुत बढ़िया! हम हमेशा अपने मॉडल पोर्टफोलियो का विस्तार करने के लिए खुले हैं।
|
||||
|
||||
1. **यहाँ से रिपॉजिटरी फोर्क करें**: सबसे पहले, [Ultralytics GitHub रिपॉजिटरी](https://github.com/ultralytics/ultralytics) को फोर्क करके शुरू करें।
|
||||
1. **रिपॉजिटरी फोर्क करें**: [Ultralytics GitHub रिपॉजिटरी](https://github.com/ultralytics/ultralytics) को फोर्क करके शुरू करें।
|
||||
|
||||
2. **अपने फोर्क को क्लोन करें**: अपने फोर्क को अपनी स्थानीय मशीन पर क्लोन करें और काम करने के लिए एक नया शाखा बनाएं।
|
||||
2. **अपने फोर्क को क्लोन करें**: अपने फोर्क को अपनी लोकल मशीन पर क्लोन करें और काम करने के लिए एक नई ब्रांच बनाएं।
|
||||
|
||||
3. **अपना मॉडल लागू करें**: अपना मॉडल उन्नत करें और Coding मानकों और दिशानिर्देशिकाओं का पालन करते हुए इसे जोड़ें। हमारे [योगदान गाइड](../../help/contributing.md) में उपलब्ध विवरणीय चरणों के लिए संपर्क करें।
|
||||
3. **अपना मॉडल लागू करें**: हमारे [Contributing Guide](../../help/contributing.md) में दिए गए कोडिंग स्टैंडर्ड्स और दिशानिर्देशों का अनुसरण करते हुए अपने मॉडल को जोड़ें।
|
||||
|
||||
4. **पूरी तरह से परीक्षण करें**: अपना मॉडल सम्पूर्ण रूप से औधोगिक रूप से परीक्षण करें, एकांत में और पाइपलाइन का हिस्सा के रूप में।
|
||||
4. **गहराई से परीक्षण करें**: अपने मॉडल का परीक्षण अलग से और पाइपलाइन के हिस्से के रूप में किया जा सकता है।
|
||||
|
||||
5. **एक पुल अनुरोध बनाएं**: अपने मॉडल से संतुष्ट होने के बाद, मुख्य रिपॉजिटरी के लिए एक पुल अनुरोध बनाएं जिसका समीक्षा की जाएगी।
|
||||
5. **पुल रिक्वेस्ट बनाएं**: एक बार जब आप अपने मॉडल से संतुष्ट हो जाएं, तो समीक्षा के लिए मुख्य रिपॉजिटरी को एक पुल रिक्वेस्ट बनाएं।
|
||||
|
||||
6. **कोड समीक्षा और मर्ज**: समीक्षा के बाद, यदि आपका मॉडल हमारे मानदंडों को पूरा करता है, तो यह मुख्य रिपॉजिटरी में मर्ज हो जाएगा।
|
||||
6. **कोड समीक्षा और मिलान**: समीक्षा के बाद, यदि आपका मॉडल हमारे मानदंडों को पूरा करता है, तो इसे मुख्य रिपॉजिटरी में मिला दिया जाएगा।
|
||||
|
||||
विस्तृत चरणों के लिए, हमारे [योगदान गाइड](../../help/contributing.md) पर देखें।
|
||||
विस्तृत चरणों के लिए हमारा [Contributing Guide](../../help/contributing.md) देखें।
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue