Update https://docs.ultralytics.com/models (#6513)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
0c4e97443b
commit
16a13a1ce0
178 changed files with 14224 additions and 561 deletions
|
|
@ -40,7 +40,7 @@ YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose model
|
|||
|
||||
Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -77,7 +77,7 @@ YOLO classification dataset format can be found in detail in the [Dataset Guide]
|
|||
|
||||
Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -104,7 +104,7 @@ Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument
|
|||
|
||||
Use a trained YOLOv8n-cls model to run predictions on images.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -131,7 +131,7 @@ See full `predict` mode details in the [Predict](https://docs.ultralytics.com/mo
|
|||
|
||||
Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -51,7 +51,7 @@ YOLOv8 pretrained Detect models are shown here. Detect, Segment and Pose models
|
|||
|
||||
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -87,7 +87,7 @@ YOLO detection dataset format can be found in detail in the [Dataset Guide](../d
|
|||
|
||||
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -116,7 +116,7 @@ Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need
|
|||
|
||||
Use a trained YOLOv8n model to run predictions on images.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -143,7 +143,7 @@ See full `predict` mode details in the [Predict](https://docs.ultralytics.com/mo
|
|||
|
||||
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -54,7 +54,7 @@ YOLOv8 pretrained Pose models are shown here. Detect, Segment and Pose models ar
|
|||
|
||||
Train a YOLOv8-pose model on the COCO128-pose dataset.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -91,7 +91,7 @@ YOLO pose dataset format can be found in detail in the [Dataset Guide](../datase
|
|||
Validate trained YOLOv8n-pose model accuracy on the COCO128-pose dataset. No argument need to passed as the `model`
|
||||
retains it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -120,7 +120,7 @@ retains it's training `data` and arguments as model attributes.
|
|||
|
||||
Use a trained YOLOv8n-pose model to run predictions on images.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -147,7 +147,7 @@ See full `predict` mode details in the [Predict](https://docs.ultralytics.com/mo
|
|||
|
||||
Export a YOLOv8n Pose model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -51,7 +51,7 @@ YOLOv8 pretrained Segment models are shown here. Detect, Segment and Pose models
|
|||
|
||||
Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -88,7 +88,7 @@ YOLO segmentation dataset format can be found in detail in the [Dataset Guide](.
|
|||
Validate trained YOLOv8n-seg model accuracy on the COCO128-seg dataset. No argument need to passed as the `model`
|
||||
retains it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -121,7 +121,7 @@ retains it's training `data` and arguments as model attributes.
|
|||
|
||||
Use a trained YOLOv8n-seg model to run predictions on images.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -148,7 +148,7 @@ See full `predict` mode details in the [Predict](https://docs.ultralytics.com/mo
|
|||
|
||||
Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue