Update https://docs.ultralytics.com/models (#6513)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
0c4e97443b
commit
16a13a1ce0
178 changed files with 14224 additions and 561 deletions
|
|
@ -41,7 +41,7 @@ Once your model is trained and validated, the next logical step is to evaluate i
|
|||
|
||||
Run YOLOv8n benchmarks on all supported export formats including ONNX, TensorRT etc. See Arguments section below for a full list of export arguments.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -48,7 +48,7 @@ Here are some of the standout functionalities:
|
|||
|
||||
Export a YOLOv8n model to a different format like ONNX or TensorRT. See Arguments section below for a full list of export arguments.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ In the world of machine learning and computer vision, the process of making sens
|
|||
| Manufacturing | Sports | Safety |
|
||||
|:-------------------------------------------------:|:----------------------------------------------------:|:-------------------------------------------:|
|
||||
| ![Vehicle Spare Parts Detection][car spare parts] | ![Football Player Detection][football player detect] | ![People Fall Detection][human fall detect] |
|
||||
| Vehicle Spare Parts Detection | Football Player Detection | People Fall Detection |
|
||||
| Vehicle Spare Parts Detection | Football Player Detection | People Fall Detection |
|
||||
|
||||
## Why Use Ultralytics YOLO for Inference?
|
||||
|
||||
|
|
@ -715,5 +715,7 @@ Here's a Python script using OpenCV (`cv2`) and YOLOv8 to run inference on video
|
|||
This script will run predictions on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.
|
||||
|
||||
[car spare parts]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/a0f802a8-0776-44cf-8f17-93974a4a28a1
|
||||
|
||||
[football player detect]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/7d320e1f-fc57-4d7f-a691-78ee579c3442
|
||||
|
||||
[human fall detect]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/86437c4a-3227-4eee-90ef-9efb697bdb43
|
||||
|
|
|
|||
|
|
@ -32,10 +32,10 @@ The output from Ultralytics trackers is consistent with standard object detectio
|
|||
|
||||
## Real-world Applications
|
||||
|
||||
| Transportation | Retail | Aquaculture |
|
||||
| Transportation | Retail | Aquaculture |
|
||||
|:----------------------------------:|:--------------------------------:|:----------------------------:|
|
||||
| ![Vehicle Tracking][vehicle track] | ![People Tracking][people track] | ![Fish Tracking][fish track] |
|
||||
| Vehicle Tracking | People Tracking | Fish Tracking |
|
||||
| Vehicle Tracking | People Tracking | Fish Tracking |
|
||||
|
||||
## Features at a Glance
|
||||
|
||||
|
|
@ -58,7 +58,7 @@ The default tracker is BoT-SORT.
|
|||
|
||||
To run the tracker on video streams, use a trained Detect, Segment or Pose model such as YOLOv8n, YOLOv8n-seg and YOLOv8n-pose.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -97,7 +97,7 @@ As can be seen in the above usage, tracking is available for all Detect, Segment
|
|||
|
||||
Tracking configuration shares properties with Predict mode, such as `conf`, `iou`, and `show`. For further configurations, refer to the [Predict](../modes/predict.md#inference-arguments) model page.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -120,7 +120,7 @@ Tracking configuration shares properties with Predict mode, such as `conf`, `iou
|
|||
|
||||
Ultralytics also allows you to use a modified tracker configuration file. To do this, simply make a copy of a tracker config file (for example, `custom_tracker.yaml`) from [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) and modify any configurations (except the `tracker_type`) as per your needs.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -354,5 +354,7 @@ To initiate your contribution, please refer to our [Contributing Guide](https://
|
|||
Together, let's enhance the tracking capabilities of the Ultralytics YOLO ecosystem 🙏!
|
||||
|
||||
[vehicle track]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/ee6e6038-383b-4f21-ac29-b2a1c7d386ab
|
||||
|
||||
[people track]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/93bb4ee2-77a0-4e4e-8eb6-eb8f527f0527
|
||||
|
||||
[fish track]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/a5146d0f-bfa8-4e0a-b7df-3c1446cd8142
|
||||
|
|
|
|||
|
|
@ -236,7 +236,7 @@ To use a logger, select it from the dropdown menu in the code snippet above and
|
|||
|
||||
To use Comet:
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
|
|
@ -254,7 +254,7 @@ Remember to sign in to your Comet account on their website and get your API key.
|
|||
|
||||
To use ClearML:
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
|
|
@ -272,7 +272,7 @@ After running this script, you will need to sign in to your ClearML account on t
|
|||
|
||||
To use TensorBoard in [Google Colab](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb):
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "CLI"
|
||||
```bash
|
||||
|
|
@ -282,7 +282,7 @@ To use TensorBoard in [Google Colab](https://colab.research.google.com/github/ul
|
|||
|
||||
To use TensorBoard locally run the below command and view results at http://localhost:6006/.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "CLI"
|
||||
```bash
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ These are the notable functionalities offered by YOLOv8's Val mode:
|
|||
|
||||
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes. See Arguments section below for a full list of export arguments.
|
||||
|
||||
!!! Example ""
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue