Update https://docs.ultralytics.com/models (#6513)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
0c4e97443b
commit
16a13a1ce0
178 changed files with 14224 additions and 561 deletions
|
|
@ -19,27 +19,29 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||
- **Optimized Accuracy-Speed Tradeoff:** With a focus on maintaining an optimal balance between accuracy and speed, YOLOv8 is suitable for real-time object detection tasks in diverse application areas.
|
||||
- **Variety of Pre-trained Models:** YOLOv8 offers a range of pre-trained models to cater to various tasks and performance requirements, making it easier to find the right model for your specific use case.
|
||||
|
||||
## Supported Tasks
|
||||
## Supported Tasks and Modes
|
||||
|
||||
| Model Type | Pre-trained Weights | Task |
|
||||
|-------------|---------------------------------------------------------------------------------------------------------------------|-----------------------|
|
||||
| YOLOv8 | `yolov8n.pt`, `yolov8s.pt`, `yolov8m.pt`, `yolov8l.pt`, `yolov8x.pt` | Detection |
|
||||
| YOLOv8-seg | `yolov8n-seg.pt`, `yolov8s-seg.pt`, `yolov8m-seg.pt`, `yolov8l-seg.pt`, `yolov8x-seg.pt` | Instance Segmentation |
|
||||
| YOLOv8-pose | `yolov8n-pose.pt`, `yolov8s-pose.pt`, `yolov8m-pose.pt`, `yolov8l-pose.pt`, `yolov8x-pose.pt`, `yolov8x-pose-p6.pt` | Pose/Keypoints |
|
||||
| YOLOv8-cls | `yolov8n-cls.pt`, `yolov8s-cls.pt`, `yolov8m-cls.pt`, `yolov8l-cls.pt`, `yolov8x-cls.pt` | Classification |
|
||||
The YOLOv8 series offers a diverse range of models, each specialized for specific tasks in computer vision. These models are designed to cater to various requirements, from object detection to more complex tasks like instance segmentation, pose/keypoints detection, and classification.
|
||||
|
||||
## Supported Modes
|
||||
Each variant of the YOLOv8 series is optimized for its respective task, ensuring high performance and accuracy. Additionally, these models are compatible with various operational modes including [Inference](../modes/predict.md), [Validation](../modes/val.md), [Training](../modes/train.md), and [Export](../modes/export.md), facilitating their use in different stages of deployment and development.
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ✅ |
|
||||
| Model | Filenames | Task | Inference | Validation | Training | Export |
|
||||
|-------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|------------|----------|--------|
|
||||
| YOLOv8 | `yolov8n.pt` `yolov8s.pt` `yolov8m.pt` `yolov8l.pt` `yolov8x.pt` | [Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv8-seg | `yolov8n-seg.pt` `yolov8s-seg.pt` `yolov8m-seg.pt` `yolov8l-seg.pt` `yolov8x-seg.pt` | [Instance Segmentation](../tasks/segment.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv8-pose | `yolov8n-pose.pt` `yolov8s-pose.pt` `yolov8m-pose.pt` `yolov8l-pose.pt` `yolov8x-pose.pt` `yolov8x-pose-p6.pt` | [Pose/Keypoints](../tasks/pose.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv8-cls | `yolov8n-cls.pt` `yolov8s-cls.pt` `yolov8m-cls.pt` `yolov8l-cls.pt` `yolov8x-cls.pt` | [Classification](../tasks/classify.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
|
||||
This table provides an overview of the YOLOv8 model variants, highlighting their applicability in specific tasks and their compatibility with various operational modes such as Inference, Validation, Training, and Export. It showcases the versatility and robustness of the YOLOv8 series, making them suitable for a variety of applications in computer vision.
|
||||
|
||||
## Performance Metrics
|
||||
|
||||
!!! Performance
|
||||
|
||||
=== "Detection (COCO)"
|
||||
|
||||
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
|
||||
|
|
@ -62,6 +64,8 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||
|
||||
=== "Segmentation (COCO)"
|
||||
|
||||
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
|
||||
|
|
@ -72,6 +76,8 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||
|
||||
=== "Classification (ImageNet)"
|
||||
|
||||
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pre-trained classes.
|
||||
|
||||
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
||||
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
|
||||
|
|
@ -82,6 +88,8 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||
|
||||
=== "Pose (COCO)"
|
||||
|
||||
See [Pose Estimation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, 'person'.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
|
||||
|
|
@ -91,13 +99,13 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
|
||||
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
|
||||
|
||||
## Usage
|
||||
## Usage Examples
|
||||
|
||||
You can use YOLOv8 for object detection tasks using the Ultralytics pip package. The following is a sample code snippet showing how to use YOLOv8 models for inference:
|
||||
This example provides simple YOLOv8 training and inference examples. For full documentation on these and other [modes](../modes/index.md) see the [Predict](../modes/predict.md), [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md) docs pages.
|
||||
|
||||
!!! Example ""
|
||||
Note the below example is for YOLOv8 [Detect](../tasks/detect.md) models for object detection. For additional supported tasks see the [Segment](../tasks/segment.md), [Classify](../tasks/classify.md) and [Pose](../tasks/pose.md) docs.
|
||||
|
||||
This example provides simple inference code for YOLOv8. For more options including handling inference results see [Predict](../modes/predict.md) mode. For using YOLOv8 with additional modes see [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md).
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -135,7 +143,7 @@ You can use YOLOv8 for object detection tasks using the Ultralytics pip package.
|
|||
|
||||
If you use the YOLOv8 model or any other software from this repository in your work, please cite it using the following format:
|
||||
|
||||
!!! Note ""
|
||||
!!! Quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
|
|
@ -151,4 +159,4 @@ If you use the YOLOv8 model or any other software from this repository in your w
|
|||
}
|
||||
```
|
||||
|
||||
Please note that the DOI is pending and will be added to the citation once it is available. The usage of the software is in accordance with the AGPL-3.0 license.
|
||||
Please note that the DOI is pending and will be added to the citation once it is available. YOLOv8 models are provided under [AGPL-3.0](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) and [Enterprise](https://ultralytics.com/license) licenses.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue