Update https://docs.ultralytics.com/models (#6513)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
0c4e97443b
commit
16a13a1ce0
178 changed files with 14224 additions and 561 deletions
|
|
@ -20,24 +20,24 @@ YOLOv5u represents an advancement in object detection methodologies. Originating
|
|||
|
||||
- **Variety of Pre-trained Models:** Understanding that different tasks require different toolsets, YOLOv5u provides a plethora of pre-trained models. Whether you're focusing on Inference, Validation, or Training, there's a tailor-made model awaiting you. This variety ensures you're not just using a one-size-fits-all solution, but a model specifically fine-tuned for your unique challenge.
|
||||
|
||||
## Supported Tasks
|
||||
## Supported Tasks and Modes
|
||||
|
||||
| Model Type | Pre-trained Weights | Task |
|
||||
|------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|
|
||||
| YOLOv5u | `yolov5nu`, `yolov5su`, `yolov5mu`, `yolov5lu`, `yolov5xu`, `yolov5n6u`, `yolov5s6u`, `yolov5m6u`, `yolov5l6u`, `yolov5x6u` | Detection |
|
||||
The YOLOv5u models, with various pre-trained weights, excel in [Object Detection](../tasks/detect.md) tasks. They support a comprehensive range of modes, making them suitable for diverse applications, from development to deployment.
|
||||
|
||||
## Supported Modes
|
||||
| Model Type | Pre-trained Weights | Task | Inference | Validation | Training | Export |
|
||||
|------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|------------|----------|--------|
|
||||
| YOLOv5u | `yolov5nu`, `yolov5su`, `yolov5mu`, `yolov5lu`, `yolov5xu`, `yolov5n6u`, `yolov5s6u`, `yolov5m6u`, `yolov5l6u`, `yolov5x6u` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ✅ |
|
||||
This table provides a detailed overview of the YOLOv5u model variants, highlighting their applicability in object detection tasks and support for various operational modes such as [Inference](../modes/predict.md), [Validation](../modes/val.md), [Training](../modes/train.md), and [Export](../modes/export.md). This comprehensive support ensures that users can fully leverage the capabilities of YOLOv5u models in a wide range of object detection scenarios.
|
||||
|
||||
## Performance Metrics
|
||||
|
||||
!!! Performance
|
||||
|
||||
=== "Detection"
|
||||
|
||||
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
|
||||
|
||||
| Model | YAML | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| [yolov5nu.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5nu.pt) | [yolov5n.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5.yaml) | 640 | 34.3 | 73.6 | 1.06 | 2.6 | 7.7 |
|
||||
|
|
@ -52,13 +52,11 @@ YOLOv5u represents an advancement in object detection methodologies. Originating
|
|||
| [yolov5l6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5l6u.pt) | [yolov5l6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 55.7 | 1470.9 | 5.47 | 86.1 | 137.4 |
|
||||
| [yolov5x6u.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov5x6u.pt) | [yolov5x6.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/models/v5/yolov5-p6.yaml) | 1280 | 56.8 | 2436.5 | 8.98 | 155.4 | 250.7 |
|
||||
|
||||
## Usage
|
||||
## Usage Examples
|
||||
|
||||
You can use YOLOv5u for object detection tasks using the Ultralytics repository. The following is a sample code snippet showing how to use YOLOv5u model for inference:
|
||||
This example provides simple YOLOv5 training and inference examples. For full documentation on these and other [modes](../modes/index.md) see the [Predict](../modes/predict.md), [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md) docs pages.
|
||||
|
||||
!!! Example ""
|
||||
|
||||
This example provides simple inference code for YOLOv5. For more options including handling inference results see [Predict](../modes/predict.md) mode. For using YOLOv5 with additional modes see [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md).
|
||||
!!! Example
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
|
@ -96,7 +94,7 @@ You can use YOLOv5u for object detection tasks using the Ultralytics repository.
|
|||
|
||||
If you use YOLOv5 or YOLOv5u in your research, please cite the Ultralytics YOLOv5 repository as follows:
|
||||
|
||||
!!! Note ""
|
||||
!!! Quote ""
|
||||
|
||||
=== "BibTeX"
|
||||
```bibtex
|
||||
|
|
@ -112,4 +110,4 @@ If you use YOLOv5 or YOLOv5u in your research, please cite the Ultralytics YOLOv
|
|||
}
|
||||
```
|
||||
|
||||
Special thanks to Glenn Jocher and the Ultralytics team for their work on developing and maintaining the YOLOv5 and YOLOv5u models.
|
||||
Please note that YOLOv5 models are provided under [AGPL-3.0](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) and [Enterprise](https://ultralytics.com/license) licenses.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue