ultralytics 8.0.211 README language links (#6370)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
This commit is contained in:
parent
fa95b31e7e
commit
14c05f0dd1
20 changed files with 72 additions and 63 deletions
|
|
@ -25,10 +25,10 @@ In the world of machine learning and computer vision, the process of making sens
|
|||
|
||||
## Real-world Applications
|
||||
|
||||
| Manufacturing | Sports | Safety |
|
||||
|:-----------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------:|
|
||||
|  |  |  |
|
||||
| Vehicle Spare Parts Detection | Football Player Detection | People Fall Detection |
|
||||
| Manufacturing | Sports | Safety |
|
||||
|:-------------------------------------------------:|:----------------------------------------------------:|:-------------------------------------------:|
|
||||
| ![Vehicle Spare Parts Detection][car spare parts] | ![Football Player Detection][football player detect] | ![People Fall Detection][human fall detect] |
|
||||
| Vehicle Spare Parts Detection | Football Player Detection | People Fall Detection |
|
||||
|
||||
## Why Use Ultralytics YOLO for Inference?
|
||||
|
||||
|
|
@ -495,7 +495,7 @@ Here is a table for the `Boxes` class methods and properties, including their na
|
|||
| `xyxyn` | Property (`torch.Tensor`) | Return the boxes in xyxy format normalized by original image size. |
|
||||
| `xywhn` | Property (`torch.Tensor`) | Return the boxes in xywh format normalized by original image size. |
|
||||
|
||||
For more details see the `Boxes` class [documentation](../reference/engine/results.md).
|
||||
For more details see the `Boxes` class [documentation](../reference/engine/results.md#ultralytics.engine.results.Boxes).
|
||||
|
||||
### Masks
|
||||
|
||||
|
|
@ -528,7 +528,7 @@ Here is a table for the `Masks` class methods and properties, including their na
|
|||
| `xyn` | Property (`torch.Tensor`) | A list of normalized segments represented as tensors. |
|
||||
| `xy` | Property (`torch.Tensor`) | A list of segments in pixel coordinates represented as tensors. |
|
||||
|
||||
For more details see the `Masks` class [documentation](../reference/engine/results.md).
|
||||
For more details see the `Masks` class [documentation](../reference/engine/results.md#ultralytics.engine.results.Masks).
|
||||
|
||||
### Keypoints
|
||||
|
||||
|
|
@ -562,7 +562,7 @@ Here is a table for the `Keypoints` class methods and properties, including thei
|
|||
| `xy` | Property (`torch.Tensor`) | A list of keypoints in pixel coordinates represented as tensors. |
|
||||
| `conf` | Property (`torch.Tensor`) | Returns confidence values of keypoints if available, else None. |
|
||||
|
||||
For more details see the `Keypoints` class [documentation](../reference/engine/results.md).
|
||||
For more details see the `Keypoints` class [documentation](../reference/engine/results.md#ultralytics.engine.results.Keypoints).
|
||||
|
||||
### Probs
|
||||
|
||||
|
|
@ -597,7 +597,7 @@ Here's a table summarizing the methods and properties for the `Probs` class:
|
|||
| `top1conf` | Property (`torch.Tensor`) | Confidence of the top 1 class. |
|
||||
| `top5conf` | Property (`torch.Tensor`) | Confidences of the top 5 classes. |
|
||||
|
||||
For more details see the `Probs` class [documentation](../reference/engine/results.md).
|
||||
For more details see the `Probs` class [documentation](../reference/engine/results.md#ultralytics.engine.results.Probs).
|
||||
|
||||
## Plotting Results
|
||||
|
||||
|
|
@ -713,3 +713,7 @@ Here's a Python script using OpenCV (`cv2`) and YOLOv8 to run inference on video
|
|||
```
|
||||
|
||||
This script will run predictions on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.
|
||||
|
||||
[car spare parts]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/a0f802a8-0776-44cf-8f17-93974a4a28a1
|
||||
[football player detect]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/7d320e1f-fc57-4d7f-a691-78ee579c3442
|
||||
[human fall detect]: https://github.com/RizwanMunawar/ultralytics/assets/62513924/86437c4a-3227-4eee-90ef-9efb697bdb43
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue