Add new @Retry() decorator (#7854)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-01-27 20:07:31 +01:00 committed by GitHub
parent 5f00fbd227
commit 1435f0e9de
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 372 additions and 269 deletions

View file

@ -10,17 +10,19 @@ from ultralytics.utils.checks import cuda_device_count, cuda_is_available
CUDA_IS_AVAILABLE = cuda_is_available()
CUDA_DEVICE_COUNT = cuda_device_count()
TASK_ARGS = [
('detect', 'yolov8n', 'coco8.yaml'),
('segment', 'yolov8n-seg', 'coco8-seg.yaml'),
('classify', 'yolov8n-cls', 'imagenet10'),
('pose', 'yolov8n-pose', 'coco8-pose.yaml'),
('obb', 'yolov8n-obb', 'dota8.yaml'), ] # (task, model, data)
("detect", "yolov8n", "coco8.yaml"),
("segment", "yolov8n-seg", "coco8-seg.yaml"),
("classify", "yolov8n-cls", "imagenet10"),
("pose", "yolov8n-pose", "coco8-pose.yaml"),
("obb", "yolov8n-obb", "dota8.yaml"),
] # (task, model, data)
EXPORT_ARGS = [
('yolov8n', 'torchscript'),
('yolov8n-seg', 'torchscript'),
('yolov8n-cls', 'torchscript'),
('yolov8n-pose', 'torchscript'),
('yolov8n-obb', 'torchscript'), ] # (model, format)
("yolov8n", "torchscript"),
("yolov8n-seg", "torchscript"),
("yolov8n-cls", "torchscript"),
("yolov8n-pose", "torchscript"),
("yolov8n-obb", "torchscript"),
] # (model, format)
def run(cmd):
@ -30,50 +32,50 @@ def run(cmd):
def test_special_modes():
"""Test various special command modes of YOLO."""
run('yolo help')
run('yolo checks')
run('yolo version')
run('yolo settings reset')
run('yolo cfg')
run("yolo help")
run("yolo checks")
run("yolo version")
run("yolo settings reset")
run("yolo cfg")
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
@pytest.mark.parametrize("task,model,data", TASK_ARGS)
def test_train(task, model, data):
"""Test YOLO training for a given task, model, and data."""
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk')
run(f"yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk")
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
@pytest.mark.parametrize("task,model,data", TASK_ARGS)
def test_val(task, model, data):
"""Test YOLO validation for a given task, model, and data."""
run(f'yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32 save_txt save_json')
run(f"yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32 save_txt save_json")
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
@pytest.mark.parametrize("task,model,data", TASK_ARGS)
def test_predict(task, model, data):
"""Test YOLO prediction on sample assets for a given task and model."""
run(f'yolo predict model={WEIGHTS_DIR / model}.pt source={ASSETS} imgsz=32 save save_crop save_txt')
run(f"yolo predict model={WEIGHTS_DIR / model}.pt source={ASSETS} imgsz=32 save save_crop save_txt")
@pytest.mark.parametrize('model,format', EXPORT_ARGS)
@pytest.mark.parametrize("model,format", EXPORT_ARGS)
def test_export(model, format):
"""Test exporting a YOLO model to different formats."""
run(f'yolo export model={WEIGHTS_DIR / model}.pt format={format} imgsz=32')
run(f"yolo export model={WEIGHTS_DIR / model}.pt format={format} imgsz=32")
def test_rtdetr(task='detect', model='yolov8n-rtdetr.yaml', data='coco8.yaml'):
def test_rtdetr(task="detect", model="yolov8n-rtdetr.yaml", data="coco8.yaml"):
"""Test the RTDETR functionality with the Ultralytics framework."""
# Warning: MUST use imgsz=640
run(f'yolo train {task} model={model} data={data} --imgsz= 640 epochs =1, cache = disk') # add coma, spaces to args
run(f"yolo train {task} model={model} data={data} --imgsz= 640 epochs =1, cache = disk") # add coma, spaces to args
run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=640 save save_crop save_txt")
def test_fastsam(task='segment', model=WEIGHTS_DIR / 'FastSAM-s.pt', data='coco8-seg.yaml'):
def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8-seg.yaml"):
"""Test FastSAM segmentation functionality within Ultralytics."""
source = ASSETS / 'bus.jpg'
source = ASSETS / "bus.jpg"
run(f'yolo segment val {task} model={model} data={data} imgsz=32')
run(f'yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt')
run(f"yolo segment val {task} model={model} data={data} imgsz=32")
run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt")
from ultralytics import FastSAM
from ultralytics.models.fastsam import FastSAMPrompt
@ -83,26 +85,26 @@ def test_fastsam(task='segment', model=WEIGHTS_DIR / 'FastSAM-s.pt', data='coco8
sam_model = FastSAM(model) # or FastSAM-x.pt
# Run inference on an image
everything_results = sam_model(source, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
everything_results = sam_model(source, device="cpu", retina_masks=True, imgsz=1024, conf=0.4, iou=0.9)
# Remove small regions
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
# Everything prompt
prompt_process = FastSAMPrompt(source, everything_results, device='cpu')
prompt_process = FastSAMPrompt(source, everything_results, device="cpu")
ann = prompt_process.everything_prompt()
# Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
# Text prompt
ann = prompt_process.text_prompt(text='a photo of a dog')
ann = prompt_process.text_prompt(text="a photo of a dog")
# Point prompt
# Points default [[0,0]] [[x1,y1],[x2,y2]]
# Point_label default [0] [1,0] 0:background, 1:foreground
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
prompt_process.plot(annotations=ann, output='./')
prompt_process.plot(annotations=ann, output="./")
def test_mobilesam():
@ -110,10 +112,10 @@ def test_mobilesam():
from ultralytics import SAM
# Load the model
model = SAM(WEIGHTS_DIR / 'mobile_sam.pt')
model = SAM(WEIGHTS_DIR / "mobile_sam.pt")
# Source
source = ASSETS / 'zidane.jpg'
source = ASSETS / "zidane.jpg"
# Predict a segment based on a point prompt
model.predict(source, points=[900, 370], labels=[1])
@ -127,10 +129,10 @@ def test_mobilesam():
# Slow Tests -----------------------------------------------------------------------------------------------------------
@pytest.mark.slow
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
@pytest.mark.skipif(CUDA_DEVICE_COUNT < 2, reason='DDP is not available')
@pytest.mark.parametrize("task,model,data", TASK_ARGS)
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
@pytest.mark.skipif(CUDA_DEVICE_COUNT < 2, reason="DDP is not available")
def test_train_gpu(task, model, data):
"""Test YOLO training on GPU(s) for various tasks and models."""
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device=0') # single GPU
run(f'yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device=0,1') # multi GPU
run(f"yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device=0") # single GPU
run(f"yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device=0,1") # multi GPU