ultralytics 8.0.197 save P, R, F1 curves to metrics (#5354)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: erminkev1 <83356055+erminkev1@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Andy <39454881+yermandy@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-10-13 02:49:31 +02:00 committed by GitHub
parent 7fd5dcbd86
commit 12e3eef844
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
33 changed files with 337 additions and 195 deletions

View file

@ -38,7 +38,7 @@ def on_pretrain_routine_end(trainer):
if not active_run:
active_run = mlflow.start_run(experiment_id=experiment.experiment_id, run_name=run_name)
LOGGER.info(f'{prefix}Using run_id({active_run.info.run_id}) at {mlflow_location}')
run.log_params(vars(trainer.model.args))
run.log_params(trainer.args)
except Exception as err:
LOGGER.error(f'{prefix}Failing init - {repr(err)}')
LOGGER.warning(f'{prefix}Continuing without Mlflow')

View file

@ -8,7 +8,10 @@ try:
assert SETTINGS['wandb'] is True # verify integration is enabled
import wandb as wb
assert hasattr(wb, '__version__')
assert hasattr(wb, '__version__') # verify package is not directory
import numpy as np
import pandas as pd
_processed_plots = {}
@ -16,6 +19,83 @@ except (ImportError, AssertionError):
wb = None
def _custom_table(x, y, classes, title='Precision Recall Curve', x_axis_title='Recall', y_axis_title='Precision'):
"""
Create and log a custom metric visualization to wandb.plot.pr_curve.
This function crafts a custom metric visualization that mimics the behavior of wandb's default precision-recall curve
while allowing for enhanced customization. The visual metric is useful for monitoring model performance across different classes.
Args:
x (List): Values for the x-axis; expected to have length N.
y (List): Corresponding values for the y-axis; also expected to have length N.
classes (List): Labels identifying the class of each point; length N.
title (str, optional): Title for the plot; defaults to 'Precision Recall Curve'.
x_title (str, optional): Label for the x-axis; defaults to 'Recall'.
y_title (str, optional): Label for the y-axis; defaults to 'Precision'.
Returns:
(wandb.Object): A wandb object suitable for logging, showcasing the crafted metric visualization.
"""
df = pd.DataFrame({'class': classes, 'y': y, 'x': x}).round(3)
fields = {'x': 'x', 'y': 'y', 'class': 'class'}
string_fields = {'title': title, 'x-axis-title': x_axis_title, 'y-axis-title': y_axis_title}
return wb.plot_table('wandb/area-under-curve/v0',
wb.Table(dataframe=df),
fields=fields,
string_fields=string_fields)
def _plot_curve(x,
y,
names=None,
id='precision-recall',
title='Precision Recall Curve',
x_title='Recall',
y_title='Precision',
num_x=100,
only_mean=False):
"""
Log a metric curve visualization.
This function generates a metric curve based on input data and logs the visualization to wandb.
The curve can represent aggregated data (mean) or individual class data, depending on the 'only_mean' flag.
Args:
x (np.ndarray): Data points for the x-axis with length N.
y (np.ndarray): Corresponding data points for the y-axis with shape CxN, where C represents the number of classes.
names (list, optional): Names of the classes corresponding to the y-axis data; length C. Defaults to an empty list.
id (str, optional): Unique identifier for the logged data in wandb. Defaults to 'precision-recall'.
title (str, optional): Title for the visualization plot. Defaults to 'Precision Recall Curve'.
x_title (str, optional): Label for the x-axis. Defaults to 'Recall'.
y_title (str, optional): Label for the y-axis. Defaults to 'Precision'.
num_x (int, optional): Number of interpolated data points for visualization. Defaults to 100.
only_mean (bool, optional): Flag to indicate if only the mean curve should be plotted. Defaults to True.
Note:
The function leverages the '_custom_table' function to generate the actual visualization.
"""
# Create new x
if names is None:
names = []
x_new = np.linspace(x[0], x[-1], num_x).round(5)
# Create arrays for logging
x_log = x_new.tolist()
y_log = np.interp(x_new, x, np.mean(y, axis=0)).round(3).tolist()
if only_mean:
table = wb.Table(data=list(zip(x_log, y_log)), columns=[x_title, y_title])
wb.run.log({title: wb.plot.line(table, x_title, y_title, title=title)})
else:
classes = ['mean'] * len(x_log)
for i, yi in enumerate(y):
x_log.extend(x_new) # add new x
y_log.extend(np.interp(x_new, x, yi)) # interpolate y to new x
classes.extend([names[i]] * len(x_new)) # add class names
wb.log({id: _custom_table(x_log, y_log, classes, title, x_title, y_title)}, commit=False)
def _log_plots(plots, step):
"""Logs plots from the input dictionary if they haven't been logged already at the specified step."""
for name, params in plots.items():
@ -55,6 +135,17 @@ def on_train_end(trainer):
if trainer.best.exists():
art.add_file(trainer.best)
wb.run.log_artifact(art, aliases=['best'])
for curve_name, curve_values in zip(trainer.validator.metrics.curves, trainer.validator.metrics.curves_results):
x, y, x_title, y_title = curve_values
_plot_curve(
x,
y,
names=list(trainer.validator.metrics.names.values()),
id=f'curves/{curve_name}',
title=curve_name,
x_title=x_title,
y_title=y_title,
)
wb.run.finish() # required or run continues on dashboard