diff --git a/docs/en/datasets/explorer/explorer.md b/docs/en/datasets/explorer/explorer.md index 852a5327..c95b03ff 100644 --- a/docs/en/datasets/explorer/explorer.md +++ b/docs/en/datasets/explorer/explorer.md @@ -53,9 +53,7 @@ Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultr ```bash %pip install ultralytics[explorer] openai -import ultralytics - -ultralytics.checks() +yolo checks ``` ## Similarity Search @@ -88,11 +86,9 @@ You can use the also plot the similar samples directly using the `plot_similar` ```python exp.plot_similar(idx=6500, limit=20) -# exp.plot_similar(idx=[100,101], limit=10) # Can also pass list of idxs or imgs +exp.plot_similar(idx=[100, 101], limit=10) # Can also pass list of idxs or imgs -exp.plot_similar( - img="https://ultralytics.com/images/bus.jpg", limit=10, labels=False -) # Can also pass any external images +exp.plot_similar(img="https://ultralytics.com/images/bus.jpg", limit=10, labels=False) # Can also pass external images ``` ![Similarity search image 2](https://github.com/ultralytics/docs/releases/download/0/similarity-search-image-2.avif) @@ -149,7 +145,7 @@ exp.plot_sql_query("WHERE labels LIKE '%person, person%' AND labels LIKE '%dog%' ```python table = exp.sql_query("WHERE labels LIKE '%person, person%' AND labels LIKE '%dog%' LIMIT 10") -table +print(table) ``` Just like similarity search, you also get a util to directly plot the sql queries using `exp.plot_sql_query` @@ -166,7 +162,7 @@ Explorer works on [LanceDB](https://lancedb.github.io/lancedb/) tables internall ```python table = exp.table -table.schema +print(table.schema) ``` ### Run raw queries¶ @@ -213,12 +209,8 @@ One of the preliminary steps in analysing embeddings is by plotting them in 2D s ![Scatterplot Example](https://github.com/ultralytics/docs/releases/download/0/scatterplot-sql-queries.avif) ```python -pip install scikit-learn - -%matplotlib inline import matplotlib.pyplot as plt -import numpy as np -from sklearn.decomposition import PCA +from sklearn.decomposition import PCA # pip install scikit-learn # Reduce dimensions using PCA to 3 components for visualization in 3D pca = PCA(n_components=3)